Ji-min Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850638/publications.pdf

Version: 2024-02-01

			304602	02 189801		
80		2,894	22		50	
papers		citations	h-index		g-index	
	i			i		
83		83	83		3500	
all docs		docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430, 45-50.	13.7	431
2	Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382, 278-281.	13.7	333
3	Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nature Structural and Molecular Biology, 2014, 21, 633-640.	3.6	213
4	New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Molecular Microbiology, 1999, 32, 449-458.	1.2	196
5	A Ubl/ubiquitin switch in the activation of Parkin. EMBO Journal, 2015, 34, 2492-2505.	3.5	164
6	The mechanism of Torsin ATPase activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4822-31.	3.3	84
7	Structure and function of the Nâ€terminal domain of the human mitochondrial calcium uniporter. EMBO Reports, 2015, 16, 1318-1333.	2.0	81
8	Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. Journal of Biological Chemistry, 2016, 291, 20869-20875.	1.6	81
9	Tertiary architecture of the <i>Oceanobacillus iheyensis </i> group II intron. Rna, 2010, 16, 57-69.	1.6	68
10	S ₃ State of the O ₂ -Evolving Complex of Photosystem II: Insights from QM/MM, EXAFS, and Femtosecond X-ray Diffraction. Biochemistry, 2016, 55, 981-984.	1.2	62
11	Crystallographic Data Support the Carousel Mechanism of Water Supply to the Oxygen-Evolving Complex of Photosystem II. ACS Energy Letters, 2017, 2, 2299-2306.	8.8	58
12	High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	58
13	Nucleotide-dependent domain motions within rings of the RecA/AAA+ superfamily. Journal of Structural Biology, 2004, 148, 259-267.	1.3	57
14	Crystal structure of Pistol, a class of self-cleaving ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1021-1026.	3.3	56
15	Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3′-terminal phosphate and 5′-OH. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15235-15240.	3.3	53
16	Domain Motions in GroEL upon Binding of an Oligopeptide. Journal of Molecular Biology, 2003, 334, 489-499.	2.0	49
17	On the interpretation of electron microscopic maps of biological macromolecules. Protein Science, 2017, 26, 122-129.	3.1	47
18	Correction of X-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 67-74.	2.5	38

#	Article	IF	Citations
19	Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. Journal of Biological Chemistry, 2022, 298, 101424.	1.6	32
20	Hoogsteen base-pairing in DNA replication?. Nature, 2005, 437, E6-E7.	13.7	29
21	Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Nature Chemical Biology, 2020, 16, 493-496.	3.9	28
22	A Twisted Four-Sheeted Model for an Amyloid Fibril. Structure, 2005, 13, 1279-1288.	1.6	27
23	Dynamic functional assembly of the Torsin AAA+ ATPase and its modulation by LAP1. Molecular Biology of the Cell, 2017, 28, 2765-2772.	0.9	26
24	Inclusion of weak high-resolution X-ray data for improvement of a group II intron structure. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 988-1000.	2.5	25
25	Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase. Nucleic Acids Research, 2013, 41, 2673-2682.	6.5	24
26	On the appearance of carboxylates in electrostatic potential maps. Protein Science, 2017, 26, 396-402.	3.1	24
27	Experimental charge density from electron microscopic maps. Protein Science, 2017, 26, 1619-1626.	3.1	23
28	Correction of X-ray intensities from an HslVâ€"HslU co-crystal containing lattice-translocation defects. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 932-941.	2.5	22
29	Identification of ions in experimental electrostatic potential maps. IUCrJ, 2018, 5, 375-381.	1.0	22
30	Thermodynamics of the S ₂ -to-S ₃ state transition of the oxygen-evolving complex of photosystem II. Physical Chemistry Chemical Physics, 2019, 21, 20840-20848.	1.3	21
31	Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. Communications Biology, 2020, 3, 408.	2.0	21
32	Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000‬MW supercritical CO2 boiler. Energy, 2019, 175, 593-603.	4.5	20
33	Unraveling the means to the end in ATP-dependent proteases. , 2001, 8, 294-296.		19
34	Estimation of the quality of refined protein crystal structures. Protein Science, 2015, 24, 661-669.	3.1	19
35	Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1491-1497.	2.5	17
36	Xâ€ray radiationâ€induced addition of oxygen atoms to protein residues. Protein Science, 2016, 25, 1407-1419.	3.1	17

#	Article	IF	CITATIONS
37	On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps. Protein Science, 2017, 26, 1098-1104.	3.1	17
38	Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models. ACS Energy Letters, 2017, 2, 397-407.	8.8	16
39	Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. Journal of Biological Chemistry, 2022, 298, 101408.	1.6	16
40	Two-Metal-Ion Catalysis: Inhibition of DNA Polymerase Activity by a Third Divalent Metal Ion. Frontiers in Molecular Biosciences, 2022, 9, 824794.	1.6	15
41	Marangoni effect in nonequilibrium multiphase system of material processing. Reviews in Chemical Engineering, 2016, 32, 551-585.	2.3	14
42	Crystallographic identification of spontaneous oxidation intermediates and products of protein sulfhydryl groups. Protein Science, 2019, 28, 472-477.	3.1	13
43	Crystallographic evidence for twoâ€metalâ€ion catalysis in human pol Ε. Protein Science, 2019, 28, 439-447.	3.1	13
44	Structural analyses of an RNA stability element interacting with poly(A). Proceedings of the National Academy of Sciences of the United States of America, 2021 , 118 , .	3.3	13
45	Oxygen additions in serial femtosecond crystallographic protein structures. Protein Science, 2016, 25, 1797-1802.	3.1	12
46	Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria. Photosynthesis Research, 2017, 134, 175-182.	1.6	12
47	Mechanism of Inhibition of the Reproduction of SARS-CoV-2 and <i>Ebola</i> Viruses by Remdesivir. Biochemistry, 2021, 60, 1869-1875.	1.2	12
48	Structural Basis for Reduced Dynamics of Three Engineered HNH Endonuclease Lys-to-Ala Mutants for the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Associated 9 (CRISPR/Cas9) Enzyme. Biochemistry, 2022, 61, 785-794.	1.2	12
49	Determination of chemical identity and occupancy from experimental density maps. Protein Science, 2018, 27, 411-420.	3.1	11
50	Do crystallographic XFEL data support binding of a water molecule to the oxygen-evolving complex of photosystem II exposed to two flashes of light? Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	11
51	Recent Cyanobacterial Kai Protein Structures Suggest a Rotary Clock. Structure, 2005, 13, 735-741.	1.6	10
52	Structural Basis for Differential Insertion Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue. Biochemistry, 2012, 51, 1476-1485.	1,2	10
53	Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses. Virology, 2014, 454-455, 93-101.	1.1	10
54	Computational insights into the membrane fusion mechanism of SARS-CoV-2 at the cellular level. Computational and Structural Biotechnology Journal, 2021, 19, 5019-5028.	1.9	10

#	Article	IF	CITATIONS
55	Insights into Binding of Single-Stranded Viral RNA Template to the Replication–Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Biochemistry, 2022, 61, 424-432.	1.2	10
56	On the validation of crystallographic symmetry and the quality of structures. Protein Science, 2015, 24, 621-632.	3.1	9
57	Identification of Mg ²⁺ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Acta Crystallographica Section D: Structural Biology, 2021, 77, 534-539.	1.1	9
58	Systematic analysis of residual density suggests that a major limitation in wellâ€refined Xâ€ray structures of proteins is the omission of ordered solvent. Protein Science, 2017, 26, 1012-1023.	3.1	8
59	Numerical Investigation of Heat Transfer Characteristics of Supercritical CO2 Tube in Combustion Chamber of Coal-Fired Boiler. Journal of Thermal Science, 2019, 28, 442-453.	0.9	8
60	Heterogeneous Composition of Oxygen-Evolving Complexes in Crystal Structures of Dark-Adapted Photosystem II. Biochemistry, 2021, 60, 3374-3384.	1.2	8
61	On the relationship between cumulative correlation coefficients and the quality of crystallographic data sets. Protein Science, 2017, 26, 2410-2416.	3.1	7
62	Misreading chaperone–substrate complexes from random noise. Nature Structural and Molecular Biology, 2018, 25, 989-990.	3.6	7
63	Visualization of H atoms in the Xâ€ray crystal structure of photoactive yellow protein: Does it contain lowâ€barrier hydrogen bonds?. Protein Science, 2019, 28, 1966-1972.	3.1	6
64	Comment on "Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphismâ€. Science, 2015, 350, 519-519.	6.0	5
65	Destructionâ€andâ€diffraction by Xâ€ray freeâ€electron laser. Protein Science, 2016, 25, 1585-1592.	3.1	5
66	On the damage done to the structure of the <i>Thermoplasma acidophilum</i> proteasome by electron radiation. Protein Science, 2018, 27, 2051-2061.	3.1	5
67	Identification of a Na ⁺ -Binding Site near the Oxygen-Evolving Complex of Spinach Photosystem II. Biochemistry, 2020, 59, 2823-2831.	1.2	5
68	Structural and biochemical insights into inhibition of human primase by citrate. Biochemical and Biophysical Research Communications, 2018, 507, 383-388.	1.0	4
69	Numerical simulation of flow and heat transfer between supercritical CO 2 tube and flue gas. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2295.	0.8	4
70	Exploiting large non-isomorphous differences for phase determination of a G-segment invertase–DNA complex. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 685-693.	2.5	4
71	Exploiting subtle structural differences in heavy-atom derivatives for experimental phasing. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1873-1883.	2.5	3
72	Reduced Occupancy of the Oxygen-Evolving Complex of Photosystem II Detected in Cryo-Electron Microscopy Maps. Biochemistry, 2018, 57, 5925-5929.	1.2	3

#	Article	IF	CITATIONS
73	Crystal structure of the C-terminal domain of DENR. Computational and Structural Biotechnology Journal, 2020, 18, 696-704.	1.9	3
74	Effects of flue gas recirculation on nitrogen oxide formation in 1000ÂMWÂS-CO ₂ coal-fired boiler with partial expansion furnace. International Journal of Chemical Reactor Engineering, 2022, 20, 929-945.	0.6	3
75	Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 2194-2210.	1.0	2
76	Structural insights into the oligomerization of FtsH periplasmic domain from Thermotoga maritima. Biochemical and Biophysical Research Communications, 2018, 495, 1201-1207.	1.0	2
77	Crystallographic study of a MATE transporter presents a difficult case in structure determination with low-resolution, anisotropic data and crystal twinning. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2287-2296.	2.5	1
78	Glycerol binding at the narrow channel of photosystem II stabilizes the low-spin S2 state of the oxygen-evolving complex. Photosynthesis Research, 2022, , $1.$	1.6	1
79	Structural basis for base discrimination by RB69 DNA polymerase. FASEB Journal, 2008, 22, 593.2.	0.2	O
80	The Hexameric Helicase DnaB Adopts a Nonplanar Conformation during Translocation. journal of hand surgery Asian-Pacific volume, The, 2020, , 365-375.	0.2	0