Peter J Hendriksen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850477/publications.pdf

Version: 2024-02-01

		840776	839539
18	343	11	18
papers	citations	h-index	g-index
18	18	18	473
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	In vitro toxicological characterisation of the antifungal compound soybean toxin (SBTX). Toxicology in Vitro, 2020, 65, 104824.	2.4	1
2	Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicology in Vitro, 2018, 46, 102-112.	2.4	16
3	A Strategy to Replace the Mouse Bioassay for Detecting and Identifying Lipophilic Marine Biotoxins by Combining the Neuro-2a Bioassay and LC-MS/MS Analysis. Marine Drugs, 2018, 16, 501.	4.6	13
4	Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants. Archives of Toxicology, 2016, 90, 1685-1694.	4.2	9
5	Protein phosphorylation profiling identifies potential mechanisms for direct immunotoxicity. Journal of Immunotoxicology, 2016, 13, 97-107.	1.7	4
6	Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models. PLoS ONE, 2016, 11, e0160719.	2.5	8
7	Successful validation of genomic biomarkers for human immunotoxicity in Jurkat T cells <i>iin vitro</i> . Journal of Applied Toxicology, 2015, 35, 831-841.	2.8	12
8	In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing. Toxicology in Vitro, 2015, 29, 281-288.	2.4	15
9	Model Steatogenic Compounds (Amiodarone, Valproic Acid, and Tetracycline) Alter Lipid Metabolism by Different Mechanisms in Mouse Liver Slices. PLoS ONE, 2014, 9, e86795.	2.5	47
10	DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicology Letters, 2014, 224, 395-406.	0.8	32
11	The effects of tributyltin oxide and deoxynivalenol on the transcriptome of the mouse thymoma cell line EL-4. Toxicology Research, 2014, 3, 254-265.	2.1	7
12	Effect of oxygen concentration and selected protocol factors on viability and gene expression of mouse liver slices. Toxicology in Vitro, 2013, 27, 1513-1524.	2.4	6
13	Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics. Toxicology Letters, 2013, 217, 1-13.	0.8	16
14	Immunocytological and biochemical analysis of the mode of action of bis (tri-n-butyltin) tri-oxide (TBTO) in Jurkat cells. Toxicology Letters, 2012, 212, 126-136.	0.8	18
15	Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights. Toxicology and Applied Pharmacology, 2012, 264, 51-64.	2.8	49
16	Transcriptomics analysis of primary mouse thymocytes exposed to bis(tri-n-butyltin)dioxide (TBTO). Toxicology, 2012, 296, 37-47.	4.2	19
17	The effects of deoxynivalenol on gene expression in the murine thymus. Toxicology and Applied Pharmacology, 2011, 250, 299-311.	2.8	25
18	Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis. Toxicology and Applied Pharmacology, 2011, 254, 311-322.	2.8	46