
Tsutomu Kakuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA Sequence and Comparison of Virulence Plasmids from Rhodococcus equi ATCC 33701 and 103. Infection and Immunity, 2000, 68, 6840-6847.	2.2	162
2	A <i>Campylobacter jejuni znuA</i> Orthologue Is Essential for Growth in Low-Zinc Environments and Chick Colonization. Journal of Bacteriology, 2009, 191, 1631-1640.	2.2	113
3	A study of the systematics of Theileria spp. based upon small-subunit ribosomal RNA gene sequences. Parasitology Research, 1999, 85, 877-883.	1.6	63
4	Cj1496c Encodes a Campylobacter jejuni Glycoprotein That Influences Invasion of Human Epithelial Cells and Colonization of the Chick Gastrointestinal Tract. Infection and Immunity, 2006, 74, 4715-4723.	2.2	60
5	Characterization of virulence plasmid types in Rhodococcus equi isolates from foals, pigs, humans and soil in Hungary. Veterinary Microbiology, 2002, 88, 377-384. Phylogeny of benign Theileria species from cattle in Thailand, China and the U.S.A. based on the major	1.9	57
6	piroplasm surface protein and small subunit ribosomal RNA genesfn1fn1Note: Nucleotide sequence data reported in this paper will appear in EMBL, GenBankTM and DDJB databases under the following accession numbers: AB010702 (MPSP gene of Theileria sp., U.S.A. isolate), AB010703 (MPSP gene of) Tj ETQq0	0 0 rgBT /(Overlock 10

Тѕитоми Какида

#	Article	IF	CITATIONS
19	Two new variants of the Rhodococcus equi virulence plasmid, 90 kb type III and type IV, recovered from a foal in Japan. Veterinary Microbiology, 2001, 82, 373-381.	1.9	29
20	Molecular epidemiology of virulent Rhodococcus equi from foals in Brazil: virulence plasmids of 85-kb type I, 87-kb type I, and a new variant, 87-kb type III. Comparative Immunology, Microbiology and Infectious Diseases, 2005, 28, 53-61.	1.6	28
21	Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni. Microbiology (United Kingdom), 2011, 157, 1279-1289.	1.8	27
22	Analysis of Immunodominant Piroplasm Surface Protein Genes of Benign Theileria Parasites Distributed in China and Korea by Allele-Specific Polymerase Chain Reaction Journal of Veterinary Medical Science, 1998, 60, 237-239.	0.9	26
23	Survey of Benign Theileria Parasites of Cattle and Buffaloes in Thailand using Allele-Specific Polymerase Chain Reaction of Major Piroplasm Surface Protein Gene Journal of Veterinary Medical Science, 2003, 65, 133-135.	0.9	26
24	Rhodococcus equi Virulence Plasmids Recovered from Horses and Their Environment in Jeju, Korea: 90-kb Type II and a New Variant, 90-kb Type V. Journal of Veterinary Medical Science, 2003, 65, 1313-1317.	0.9	25
25	A novel staphylococcal enterotoxin SEO2 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiology, 2020, 92, 103588.	4.2	24
26	Immunogenecity of synthetic peptides representing linear B-cell epitopes of VapA of Rhodococcus equi. Vaccine, 2004, 22, 1114-1123.	3.8	20
27	Differentiation and Quantification of Theileria sergenti Piroplasm Types Using Type-Specific Monoclonal Antibodies Journal of Veterinary Medical Science, 1998, 60, 665-669.	0.9	19
28	Genotypic characterization of VapA positive Rhodococcus equi in foals with pulmonary affection and their soil environment on a warmblood horse breeding farm in Germany. Research in Veterinary Science, 2007, 83, 311-317.	1.9	19
29	Genetic Diversity of Major Piroplasm Surface Protein Genes and Their Allelic Variants of Theileria Parasites in Thai Cattle Journal of Veterinary Medical Science, 1999, 61, 991-994.	0.9	17
30	Isolation of virulent Rhodococcus equi from native Japanese horses. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24, 123-133.	1.6	17
31	VirS, an OmpR/PhoB subfamily response regulator, is required for activation of vapA gene expression in Rhodococcus equi. BMC Microbiology, 2014, 14, 243.	3.3	17
32	Identification of virulence-associated antigens and plasmids in Rhodococcus equi from patients with acquired immune deficiency syndrome and prevalence of virulent R. equi in soil collected from domestic animal farms in Chiang Mai, Thailand American Journal of Tropical Medicine and Hygiene, 2002, 66, 52-55.	1.4	17
33	Characterization of two putative mechanosensitive channel proteins of Campylobacter jejuni involved in protection against osmotic downshock. Veterinary Microbiology, 2012, 160, 53-60.	1.9	16
34	Survey of Theileria Parasite Infection in Cattle in Taiwan Journal of Veterinary Medical Science, 1998, 60, 253-255.	0.9	15
35	False Positive Responses of Campylobacter jejuni when Using the Chemical-In-Plug Chemotaxis Assay. Journal of Veterinary Medical Science, 2011, 73, 389-391.	0.9	15
36	Rescue of an intracellular avirulent <i>Rhodococcus equi</i> replication defect by the extracellular addition of virulence-associated protein A. Journal of Veterinary Medical Science, 2017, 79, 1323-1326.	0.9	15

Тѕитоми Какида

#	Article	IF	CITATIONS
37	Pathogenicity and genomic features of vapN-harboring Rhodococcus equi isolated from human patients. International Journal of Medical Microbiology, 2021, 311, 151519.	3.6	15
38	Molecular cloning and characterization of a 79-kDa iron-repressible outer-membrane protein of Moraxella bovis. FEMS Microbiology Letters, 2003, 225, 279-284.	1.8	13
39	Isolation of Rhodococcus equi from the feces of indigenous animals and soil from the Lower Zambezi National Park and Lochinvar National Park, Zambia. Journal of Veterinary Medical Science, 2004, 66, 743-746.	0.9	12
40	Isolation of Rhodococcus equi from Wild Boars (Sus scrofa) in Japan. Journal of Wildlife Diseases, 2012, 48, 815-817.	0.8	12
41	A case report on disseminated <i>Rhodococcus equi</i> infection in a Japanese black heifer. Journal of Veterinary Medical Science, 2018, 80, 819-822.	0.9	12
42	Prevalence of Virulence Plasmids in Soil Isolates of Rhodococcus equi from 5 Horse-Breeding Farms in Argentina Journal of Equine Science, 2000, 11, 23-27.	0.8	11
43	Molecular Epidemiology of VapA-Positive Rhodococcus equi in Thoroughbred Horses in Kagoshima, Japan Journal of Veterinary Medical Science, 2002, 64, 715-718.	0.9	11
44	Some Epidemiological Aspects of Rhodococcus equi Infection in Foals in Japan: A Review of 108 Cases in 1992-1998 Journal of Equine Science, 2000, 11, 7-14.	0.8	10
45	Molecular Typing of VapA-Positive Rhodococcus equi Isolates from Jeju Native Horses, Korea. Journal of Veterinary Medical Science, 2006, 68, 249-253.	0.9	10
46	Serological epidemiological surveillance for vapN-harboring Rhodococcus equi infection in goats. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 73, 101540.	1.6	9
47	Isotype-specific Antibody Responses to Rhodococcus equi in Foals on a Horse-breeding Farm with a Persistent Incidence of R. equi Infection Journal of Equine Science, 2002, 13, 63-70.	0.8	8
48	Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis. Veterinary Microbiology, 2006, 118, 141-147.	1.9	8
49	Characterization of Some Theileria parva Stocks from Zambia Using Monoclonal Antibodies Journal of Veterinary Medical Science, 1997, 59, 1-4.	0.9	7
50	Cloning and Characterization of the <i>fur</i> Gene from <i>Moraxella bovis</i> . Microbiology and Immunology, 2003, 47, 411-417.	1.4	7
51	Chemotactic invasion in deep soft tissue by Vibrio vulnificus is essential for the progression of necrotic lesions. Virulence, 2020, 11, 839-847.	4.4	7
52	Epitope-Mapping of Antigen-Specific T Lymphocyte in Cattle Immunized with Recombinant Major Piroplasm Surface Protein of Theileria sergenti Journal of Veterinary Medical Science, 2001, 63, 895-901.	0.9	6
53	The Absence of Rhodococcus equi in Mongolian Horses. Journal of Veterinary Medical Science, 2005, 67, 611-613.	0.9	6
54	Rhodococcus equi in the Soil Environment of Horses in Inner Mongolia, China. Journal of Veterinary Medical Science, 2006, 68, 739-742.	0.9	6

Тѕитоми Какида

#	Article	IF	CITATIONS
55	Transcriptional regulation by VirR and VirS of members of the <i>Rhodococcus equi</i> virulenceâ€associated protein multigene family. Microbiology and Immunology, 2015, 59, 495-499.	1.4	6
56	Genotypic Characterization of Virulent Rhodococcus equi Isolated from the Environment of Hokkaido Native Horses in Hakodate, Hokkaido. Journal of Equine Science, 2005, 16, 29-34.	0.8	5
57	Participation of Platelets in Protection against Larval <i>Taenia taeniaeformis</i> Infection in Mice. International Archives of Allergy and Immunology, 1996, 109, 295-297.	2.1	4
58	Prevalence of Virulent Rhodococcus equi in Soil Environment on a Horse-Breeding Farm in Tennessee, U.S.A Journal of Equine Science, 2004, 15, 75-79.	0.8	4
59	Birth month associated with tracheal colonization of Rhodococcus equi in newborn foals on horse-breeding farms with sporadic rhodococcosis in Japan. Veterinary Microbiology, 2022, 267, 109373.	1.9	4
60	Plasmid Profiles of Virulent Rhodococcus equi Strains Isolated from Infected Foals in Poland. PLoS ONE, 2016, 11, e0152887.	2.5	3
61	Contamination and Antimicrobial Susceptibility Testing of Staphylococcus aureus Isolated from Pork in Fresh Markets, Nongchok District, Thailand. Veterinary Medicine International, 2021, 2021, 1-3.	1.5	3
62	Cellulitis-related Rhodococcus equi in a cat harboring VAPA-type plasmid pattern. Microbial Pathogenesis, 2021, 160, 105186.	2.9	2
63	Re-examination of Virulence of <i>Rhodococcus equi</i> Isolates from an Infected Goat and Its Environmental Soil in Okinawa Reported in 2015. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2020, 73, 582-584.	0.1	2
64	<i>Rhodococcus equi</i> U19 strain harbors a nonmobilizable virulence plasmid. Microbiology and Immunology, 2022, , .	1.4	2
65	Complete Genome Sequences of Staphylococcus argenteus Tokyo13064 and Tokyo13069, Isolated from Specimens Obtained during a Food Poisoning Outbreak in Tokyo, Japan. Microbiology Resource Announcements, 2021, 10, .	0.6	1
66	<i>Rhodococcus equi</i> Infections in Domestic Animals, Companion Animals, and Wildlife. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2021, 74, 695-706.	0.1	1
67	Identification of genes required for the fitness of <i>Rhodococcus equi</i> during the infection of mice via signature-tagged transposon mutagenesis. Journal of Veterinary Medical Science, 2021, 83, 1182-1190.	0.9	0
68	An Autobioluminescent Method for Evaluating <i>In Vitro</i> and <i>In Vivo</i> Growth of Rhodococcus equi. Microbiology Spectrum, 0, , .	3.0	0