Raj Senani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850184/publications.pdf

Version: 2024-02-01

161 papers	3,201 citations	32 h-index	243625 44 g-index
165	165	165	416
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extension of recently proposed two-CFOA-GC all pass filters to the realisation of first order universal active filters. AEU - International Journal of Electronics and Communications, 2022, 146, 154119.	2.9	16
2	Inverse Analog Filters: History, Progress and Unresolved Issues. Electronics (Switzerland), 2022, 11, 841.	3.1	7
3	New Very-Low-Frequency Third-Order Quadrature Sinusoidal Oscillators Using CFOAs. Circuits, Systems, and Signal Processing, 2022, 41, 4293-4323.	2.0	3
4	CFOAâ€based simple mixedâ€mode firstâ€order universal filter configurations. International Journal of Circuit Theory and Applications, 2022, 50, 2631-2641.	2.0	11
5	Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU - International Journal of Electronics and Communications, 2022, 153, 154285.	2.9	9
6	FGMTL based Low Voltage Current Mode Squarer/Divider Circuit. , 2021, , .		2
7	CMOS Voltage-Controlled Negative Resistance Realization. American Journal of Electrical and Electronic Engineering, 2020, 8, 120-124.	1.4	2
8	Electronically tunable grounded/floating inductance simulators using Z-copy CFCCC. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26, 1041-1055.	1.4	21
9	Fully-differential current-mode higher order filters using all grounded passive elements. AEU - International Journal of Electronics and Communications, 2018, 97, 102-109.	2.9	5
10	OTRA, its implementations and applications: a state-of-the-art review. Analog Integrated Circuits and Signal Processing, 2018, 97, 281-311.	1.4	7
11	OTRA-Based Multi-Function Inverse Filter Configuration. Advances in Electrical and Electronic Engineering, 2018, 15, .	0.3	16
12	From Editor-in-Chief's Desk. IETE Journal of Education Online, 2017, 58, 2-2.	0.6	0
13	Rebuttal to â€Fully-uncoupled independent control of frequency and condition of oscillation: A caution'. AEU - International Journal of Electronics and Communications, 2017, 81, 120-131.	2.9	O
14	On the realisation of canonic singleâ€resistanceâ€controlled oscillators using third generation current conveyors. IET Circuits, Devices and Systems, 2017, 11, 10-20.	1.4	19
15	From Editor-in-Chief's desk. IETE Journal of Education Online, 2017, 58, 49-49.	0.6	O
16	New grounded immittance simulators employing a single CFCC. Journal of Engineering, 2017, 2017, 435-447.	1.1	8
17	From Editor-in-Chief's Desk. IETE Journal of Education Online, 2016, 57, 45-45.	0.6	O
18	From Editor-in-Chief's Desk. IETE Journal of Education Online, 2016, 57, 1-1.	0.6	0

#	Article	IF	Citations
19	New canonic lossy inductor using a single CDBA and its application. International Journal of Electronics, $2016, 103, 1-13$.	1.4	49
20	Realization of Sinusoidal Oscillators Using Current Feedback Op-Amps. , 2016, , 213-268.		1
21	Current Directions of Research and Concluding Remarks. , 2016, , 575-588.		0
22	Electronically Controllable OTA-C and Gm-C Sinusoidal Oscillators. , 2016, , 143-173.		1
23	Sinusoidal Oscillators Using Current Conveyors. , 2016, , 175-212.		1
24	Single-Element-Controlled and Other Varieties of Op-Amp Sinusoidal Oscillators. , 2016, , 73-141.		0
25	Basic Sinusoidal Oscillators and Waveform Generators Using IC Building Blocks. , 2016, , 3-70.		2
26	Sinusoidal Oscillator Realizations Using Modern Electronic Circuit Building Blocks., 2016,, 269-366.		0
27	Current-Controlled Sinusoidal Oscillators Using Current-Controllable Building Blocks. , 2016, , 395-423.		2
28	Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks. , 2016, , .		63
29	Generation of Equivalent Oscillators Using Various Network Transformations. , 2016, , 447-475.		2
30	Simple Simulated Inductor, Low-Pass/Band-Pass Filter and Sinusoidal Oscillator Using OTRA. Circuits and Systems, 2016, 07, 83-99.	0.1	10
31	Realization of Sinusoidal Oscillators Using CCs. , 2015, , 193-218.		1
32	From Editor-in-Chief's Desk. IETE Journal of Education Online, 2015, 56, 39-39.	0.6	0
33	First, Second and Higher Order Filter Design Using Current Conveyors. , 2015, , 139-191.		1
34	Analog Filter Design Revisited: Circuit Configurations Using Newer Varieties of CCs., 2015, , 371-447.		1
35	Varieties of Current Conveyors. , 2015, , 315-348.		1
36	Basic Analog Circuit Building Blocks Using CCs and Application of CCs in Impedance Synthesis. , 2015 , , $85-138$.		0

#	Article	IF	CITATIONS
37	Hardware Implementations of CCs Using Off-the-Shelf ICs. , 2015, , 17-31.		О
38	The Evolution and the History of Current Conveyors. , 2015, , 3-16.		0
39	Other Building Blocks Having MTC or CC at Front-end and Their Applications. , 2015, , 349-367.		0
40	Generation of equivalent forms of operational transâ€conductance amplifierâ€RC sinusoidal oscillators: the nullor approach. Journal of Engineering, 2014, 2014, 324-331.	1,1	11
41	Realization of SRCOs: another new application of DDAs. Analog Integrated Circuits and Signal Processing, 2013, 76, 267-272.	1.4	5
42	Current Feedback Operational Amplifiers and Their Applications. Analog Circuits and Signal Processing Series, 2013, , .	0.3	74
43	A new universal biquad filter using differential difference amplifiers and its practical realization. Analog Integrated Circuits and Signal Processing, 2013, 75, 293-297.	1.4	17
44	Simulation of a Floating Inductance: A New Two-CFOA-Based Configuration. , 2013, , .		15
45	Realization of Other Building Blocks Using CFOAs. Analog Circuits and Signal Processing Series, 2013, , 201-221.	0.3	0
46	New OTRA-Based Generalized Impedance Simulator. ISRN Electronics, 2013, 2013, 1-10.	1.1	8
47	New Voltage Mode Universal Filters Using Only Two CDBAs. ISRN Electronics, 2013, 2013, 1-6.	1.1	14
48	Nullors, Their Bipolar and CMOS Implementations and Applications in Analog Circuit Synthesis and Design., 2013,, 31-59.		1
49	Design of Filters Using CFOAs. Analog Circuits and Signal Processing Series, 2013, , 81-130.	0.3	0
50	Simulation of Inductors and Other Types of Impedances Using CFOAs. Analog Circuits and Signal Processing Series, 2013, , 49-80.	0.3	0
51	Synthesis of Sinusoidal Oscillators Using CFOAs. Analog Circuits and Signal Processing Series, 2013, , 131-179.	0.3	1
52	ON THE TRANSFORMATION OF GROUNDED INDUCTORS TO FLOATING INDUCTORS USING OFA AND FCCII. Journal of Circuits, Systems and Computers, 2012, 21, 1250044.	1.5	2
53	Configuration for realising a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circuits, Devices and Systems, 2012, 6, 159.	1.4	34
54	New lossy/loss-less synthetic floating inductance configuration realized with only two CFOAs. Analog Integrated Circuits and Signal Processing, 2012, 73, 981-987.	1.4	35

#	Article	IF	CITATIONS
55	New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integrated Circuits and Signal Processing, 2012, 73, 427-437.	1.4	21
56	OTRA-based Grounded-FDNR and Grounded-Inductance Simulators and Their Applications. Circuits, Systems, and Signal Processing, 2012, 31, 489-499.	2.0	56
57	New analogue inverse filters realised with current feedback op-amps. International Journal of Electronics, 2011, 98, 1103-1113.	1.4	37
58	Systematic realisation of quadrature oscillators using current differencing buffered amplifiers. IET Circuits, Devices and Systems, 2011, 5, 203.	1.4	23
59	A NEW ELECTRONICALLY-TUNABLE ACTIVE-ONLY UNIVERSAL BIQUAD. Journal of Circuits, Systems and Computers, 2011, 20, 549-555.	1.5	2
60	SYNTHESIS OF LINEAR VCOs: THE STATE-VARIABLE APPROACH. Journal of Circuits, Systems and Computers, 2011, 20, 587-606.	1.5	12
61	Electronically-Controlled Current-mode second order Sinusoidal Oscillators Using MO-OTAs and Grounded Capacitors. Circuits and Systems, 2011, 02, 65-73.	0.1	20
62	Sinusoidal oscillators with explicit current output employing currentâ€feedback opâ€amps. International Journal of Circuit Theory and Applications, 2010, 38, 131-147.	2.0	12
63	New grounded simulated inductance circuit using a single PFTFN. Analog Integrated Circuits and Signal Processing, 2010, 62, 105-112.	1.4	47
64	Linear sinusoidal VCOs: new configurations using current-feedback-op-amps. International Journal of Electronics, 2010, 97, 263-272.	1.4	19
65	Two Simple Analog Multiplier Based Linear VCOs Using a Single Current Feedback Op-Amp. Circuits and Systems, 2010, 01, 1-4.	0.1	11
66	ELECTRONICALLY-CONTROLLABLE FLOATING INDUCTOR USING OPERATIONAL MIRRORED AMPLIFIER. Journal of Circuits, Systems and Computers, 2009, 18, 59-66.	1.5	2
67	Inverse active filters employing CFOAs. Electrical Engineering, 2009, 91, 23-26.	2.0	36
68	New voltage controlled oscillators using CFOAs. AEU - International Journal of Electronics and Communications, 2009, 63, 209-217.	2.9	33
69	A configuration for realizing floating, linear, voltageâ€controlled resistance, inductance and FDNC elements. International Journal of Circuit Theory and Applications, 2009, 37, 709-719.	2.0	31
70	Comment: Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circuits, Devices and Systems, 2008, 2, 465.	1.4	7
71	New voltage-model/current-mode universal biquad filter using unity-gain cells. International Journal of Electronics, 2006, 93, 769-775.	1.4	21
72	A systematic realization of current mode universal biquad filters. International Journal of Electronics, 2006, 93, 623-636.	1.4	5

#	Article	IF	CITATIONS
73	New universal filter using only current followers as active elements. AEU - International Journal of Electronics and Communications, 2006, 60, 251-256.	2.9	21
74	New Single-Resistance-Controlled Oscillator Configurations Using Unity-Gain Cells. Analog Integrated Circuits and Signal Processing, 2006, 46, 111-119.	1.4	27
75	Improved grounded-capacitor SRCO using only a single PFTFN. Analog Integrated Circuits and Signal Processing, 2006, 50, 147-149.	1.4	10
76	New CFOA-Based Single-Element-Controlled Sinusoidal Oscillators. IEEE Transactions on Instrumentation and Measurement, 2006, 55, 2014-2021.	4.7	87
77	New Universal Biquads Employing CFOAs. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 1299-1303.	2.2	35
78	Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp. IEICE Electronics Express, 2005, 2, 14-18.	0.8	21
79	Novel mixed-mode universal biquad configuration. IEICE Electronics Express, 2005, 2, 548-553.	0.8	41
80	CFOA-based state-variable biquad and its high-frequency compensation. IEICE Electronics Express, 2005, 2, 232-238.	0.8	13
81	New OTA-C universal current-mode/trans-admittance biquads. IEICE Electronics Express, 2005, 2, 8-13.	0.8	58
82	New FTFN-based grounded-capacitor SRCO with explicit current-mode output and reduced number of resistors. AEU - International Journal of Electronics and Communications, 2005, 59, 48-51.	2.9	16
83	Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier. IET Circuits, Devices and Systems, 2005, 152, 38.	0.6	22
84	DUAL FUNCTION CAPABILITY OF RECENTLY PROPOSED FOUR-CURRENT-CONVEYOR-BASED VM BIQUAD. Journal of Circuits, Systems and Computers, 2005, 14, 51-56.	1.5	12
85	Tunable Current-Mode Universal 220 Frequenz 59 (2005) 9-10 Biquads employing only three MOCCs and all grounded passive elements: Additional New Realizations. Frequenz, 2005, 59, 220-224.	0.9	7
86	Two new canonic single-CFOA oscillators with single resistor controls. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2005, 52, 860-864.	2.2	34
87	A New Floating Current-Controlled Positive Resistance Using Mixed Translinear Cells. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2004, 51, 374-377.	2.2	20
88	On the Realization of Universal Current Mode Biquads Using a Single CFOA. Analog Integrated Circuits and Signal Processing, 2004, 41, 65-78.	1.4	13
89	Universal current mode biquad using a single CFOA. International Journal of Electronics, 2004, 91, 175-183.	1.4	27
90	Multifunction CM/VM Biquads Realized with a Single CFOA and Grounded Capacitors. AEU - International Journal of Electronics and Communications, 2003, 57, 301-308.	2.9	22

#	Article	IF	Citations
91	New Tunable SIMO-Type Current Mode Universal Biquad Using only three MOCCs and all Grounded Passive Elements. Frequenz, 2003, 57, .	0.9	6
92	A NEW FOUR-CC-BASED CONFIGURATION FOR REALIZING A VOLTAGE-MODE BIQUAD FILTER. Journal of Circuits, Systems and Computers, 2002, 11, 213-218.	1.5	20
93	Bibliography on Nullors and Their Applications in Circuit Analysis, Synthesis and Design. Analog Integrated Circuits and Signal Processing, 2002, 33, 65-76.	1.4	52
94	Comment: CMOS differential difference current conveyors and their applications. IET Circuits, Devices and Systems, 2001, 148, 335.	0.6	22
95	Active-R design using CFOA-poles: new resonators, filters, and oscillators. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2001, 48, 504-511.	2.2	31
96	Novel SRCOs using first generation current conveyor. International Journal of Electronics, 2000, 87, 1187-1192.	1.4	15
97	Grounded-capacitor current-mode SRCO: Novel application of DVCCC. Electronics Letters, 2000, 36, 195.	1.0	70
98	Implementation of Chua's chaotic circuit using current feedback op-amps. Electronics Letters, 1998, 34, 829.	1.0	61
99	Low-component-count active-only imittances and their application in realising simple multifunction biquads. Electronics Letters, 1998, 34, 718.	1.0	30
100	Realization of a Class of Analog Signal Processing / Signal Generation Circuits: Novel Configurations Using Current Feedback Op-Amps. Frequenz, 1998, 52, 196-206.	0.9	98
101	Universal Voltage-Mode/Current-Mode Biquad Filter Realised with Current Feedback Op-Amps. Frequenz, 1997, 51, .	0.9	20
102	New macromodels of a switch for SPICE applications. IEEE Transactions on Education, 1997, 40, 273-277.	2.4	0
103	Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1996, 43, 698-700.	0.1	57
104	A Simple Approach of Deriving Single-Input-Multiple-Output Current- Mode Biquad Filters. Frequenz, 1996, 50, .	0.9	44
105	New active-R sinusoidal VCOs with linear tuning laws. International Journal of Electronics, 1996, 80, 57-61.	1.4	13
106	Alternative modification of the classical GIC structure. Electronics Letters, 1996, 32, 1329.	1.0	7
107	KHN-equivalent biquad using current conveyors. Electronics Letters, 1995, 31, 626.	1.0	78
108	Floating GNIC/GNII configuration realised with only a single OMA. Electronics Letters, 1995, 31, 423-425.	1.0	14

#	Article	IF	CITATIONS
109	Class of floating, generalised, positive/negative immittance convertors/inverters realised with operational mirrored amplifiers. Electronics Letters, 1994, 30, 3-5.	1.0	25
110	Minimal realisations of a class of operational-mirrored-amplifier-based floating impedances. Electronics Letters, 1994, 30, 1113-1114.	1.0	22
111	Realisation of linear voltage-controlled resistance in floating form. Electronics Letters, 1994, 30, 1909-1911.	1.0	62
112	New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls. Microelectronics Journal, 1994, 25, 115-123.	2.0	15
113	Versatile voltage-controlled impedance configuration. IET Circuits, Devices and Systems, 1994, 141, 414.	0.6	16
114	On equivalent forms of single op-amp sinusoidal RC oscillators. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1994, 41, 617-624.	0.1	53
115	Systematic derivation of all possible canonic OTA-C sinusoidal oscillators. Journal of the Franklin Institute, 1993, 330, 885-903.	3.4	20
116	A class of three-OTA-two-capacitor oscillators with non-interacting controls. International Journal of Electronics, 1993, 74, 459-463.	1.4	27
117	On the realization of linear sinusoidal VCOs. International Journal of Electronics, 1993, 74, 727-733.	1.4	12
118	Simple sinusoidal oscillator using opamp compensation poles. Electronics Letters, 1993, 29, 452.	1.0	11
119	New current-mode biquad filter. International Journal of Electronics, 1992, 73, 735-742.	1.4	63
120	A simple configuration for realizing voltage-controlled impedances. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1992, 39, 52-59.	0.1	39
121	Single op-amp sinusoidal oscillators suitable for generation of very low frequencies. IEEE Transactions on Instrumentation and Measurement, 1991, 40, 777-779.	4.7	34
122	Realization of voltage-controlled impedances. IEEE Transactions on Circuits and Systems, 1991, 38, 1081-1086.	0.9	20
123	Some Simple Techniques of Generating OTA-C Sinusoidal Oscillators. Frequenz, 1991, 45, .	0.9	8
124	New multifunction active filter configuration employing current conveyors. Electronics Letters, 1990, 26, 1814.	1.0	30
125	Systematic generation of OTA-C sinusoidal oscillators. Electronics Letters, 1990, 26, 1457.	1.0	31
126	Realisation of Linear Circuits Using IC Op-Amps: Some Appraisals. IETE Journal of Education Online, 1990, 31, 61-70.	0.6	0

#	Article	IF	Citations
127	Three op amp floating immittance simulators: a retrospection. IEEE Transactions on Circuits and Systems, 1989, 36, 1463-1465.	0.9	14
128	Linearly tunable Wien bridge oscillator realised with operational transconductance amplifiers. Electronics Letters, 1989, 25, 19-21.	1.0	16
129	Analysis, Synthesis and Design of New Types of RC-Active Sinusoidal Oscillators (Part I). Frequenz, 1988, 42, .	0.9	4
130	Floating immittance realisation: nullor approach. Electronics Letters, 1988, 24, 403.	1.0	31
131	Simple approach for generating active-compensated building blocks. Electronics Letters, 1988, 24, 916.	1.0	2
132	A novel application of four-terminal floating nullors. Proceedings of the IEEE, 1987, 75, 1544-1546.	21.3	73
133	On the transformation of RC-active oscillators. IEEE Transactions on Circuits and Systems, 1987, 34, 1091-1093.	0.9	20
134	On the realization of floating active elements. IEEE Transactions on Circuits and Systems, 1986, 33, 323-324.	0.9	48
135	New Types of Sinewave Oscillators. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34, 461-463.	4.7	25
136	New Rc-Active oscillator configuration employing unity-gain amplifiers. Electronics Letters, 1985, 21, 889.	1.0	26
137	Novel higher-order active filter design using current conveyors. Electronics Letters, 1985, 21, 1055.	1.0	29
138	Floating ideal FDNR using only two current conveyors. Electronics Letters, 1984, 20, 205.	1.0	50
139	Novel application of generalised current conveyor. Electronics Letters, 1984, 20, 169.	1.0	9
140	On the synthesis of a class of immittances and filters using grounded capacitors. International Journal of Circuit Theory and Applications, 1983, 11, 410-415.	2.0	8
141	Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 1982, 18, 413.	1.0	54
142	New Single-Capacitor Simulations of Floating Inductors. Electrocomponent Science and Technology, 1982, 10, 7-12.	0.0	15
143	Canonic Synthetic Floating-Inductance Circuits Employing Only a Single Component-Matching Condition. IETE Journal of Research, 1981, 27, 201-204.	2.6	4
144	Linear resistance-to-frequency conversion employing integrated circuit operational amplifiers. International Journal of Electronics, 1981, 50, 485-491.	1.4	4

#	Article	IF	Citations
145	Novel circuit implementation of current conveyors using an o.a. and an o.t.a. Electronics Letters, 1980, 16, 2.	1.0	39
146	Novel sinusoidal oscillator employing grounded capacitors. Electronics Letters, 1980, 16, 62.	1.0	19
147	Reply: Novel sinusoidal oscillator employing grounded capacitors. Electronics Letters, 1980, 16, 863.	1.0	1
148	Comments on: â€~Floating ideal inductor with one d.v.c.c.s.' and â€~Novel capacitor flotation scheme'. Electronics Letters, 1980, 16, 117.	1.0	0
149	New tunable synthetic floating inductors. Electronics Letters, 1980, 16, 382.	1.0	61
150	Novel active RC realisations of tunable floating inductors. Electronics Letters, 1980, 16, 154.	1.0	11
151	New canonic single-resistance-controlled sinusoidal oscillator using a single current conveyor. Electronics Letters, 1979, 15, 568.	1.0	29
152	Reply: Active simulation of inductors using current conveyor. Electronics Letters, 1979, 15, 113.	1.0	1
153	Novel active RC circuit for floating-inductor simulation. Electronics Letters, 1979, 15, 679.	1.0	22
154	Some observations concerning the methods of filter/oscillator realization using the concept of FDNR. Proceedings of the IEEE, 1979, 67, 1665-1666.	21.3	7
155	New canonic sinusoidal oscillator with independent frequency control through a single grounded resistor. Proceedings of the IEEE, 1979, 67, 691-692.	21.3	28
156	New canonic active RC realizations of grounded and floating inductors. Proceedings of the IEEE, 1978, 66, 803-804.	21.3	18
157	Realisation of single-resistance-controlled lossless floating inductance. Electronics Letters, 1978, 14, 828.	1.0	10
158	Active simulation of inductors using current conveyor. Electronics Letters, 1978, 14, 483.	1.0	33
159	New SRCO with explicit current-mode output using two CCs and grounded capacitors. Turkish Journal of Electrical Engineering and Computer Sciences, 0, , .	1.4	2
160	New CMOS linear voltage-controlled floating positive and negative resistances. Analog Integrated Circuits and Signal Processing, 0 , 1 .	1.4	1
161	Single-CFOA-Single-External-Capacitor-based <i>Partially-Active-R</i> SRCOs: <i>The Fourth Missing Circuit</i> Journal of Circuits, Systems and Computers, 0, , .	1.5	0