Moustafa M Zagho

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2850000/moustafa-m-zagho-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 604 13 23 g-index

23 788 4.9 4.76 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
23	Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. <i>Materials Science and Engineering C</i> , 2021 , 122, 111910	8.3	1
22	A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2021 , 109, 1893-1908	3.5	7
21	A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). <i>Chemical Engineering Journal Advances</i> , 2021 , 6, 100091	3.6	33
20	Functional Mesoporous Polymer Composites and their Applications: A Review 2020 , 153-191		
19	Sequential Chemistry Toward Core-Shell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3287-3293	16.4	44
18	Sequential Chemistry Toward CoreBhell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 3313-3319	3.6	13
17	Mechanical properties of gamma irradiated TiO2NPs/MWCNTs/LDPE hybrid nanocomposites. <i>Emergent Materials</i> , 2020 , 3, 675-683	3.5	6
16	Recent advances in stimuli-responsive drug release and targeting concepts using mesoporous silica nanoparticles. <i>Emergent Materials</i> , 2020 , 3, 407-425	3.5	24
15	Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective. <i>Nanomaterials</i> , 2019 , 9,	5.4	24
14	Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. <i>International Journal of Nanomedicine</i> , 2019 , 14, 4529-4539	7.3	30
13	Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	18
12	Core-Shell Magnetic Mesoporous Silica Microspheres with Large Mesopores for Enzyme Immobilization in Biocatalysis. <i>ACS Applied Materials & Discourage of the State of the Sta</i>	9.5	53
11	Oxidative Degradation of Tannic Acid in Aqueous Solution by UV/S2O82land UV/H2O2/Fe2+ Processes: A Comparative Study. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 156	2.6	10
10	Experimental and theoretical studies on the mechanical and structural changes imposed by the variation of clay loading on poly(vinyl alcohol)/cloisite 93A nanocomposites. <i>Journal of Vinyl and Additive Technology</i> , 2019 , 25, 172-181	2	9
9	A brief overview of RF sputtering deposition of boron carbon nitride (BCN) thin films. <i>Emergent Materials</i> , 2019 , 2, 79-93	3.5	9
8	Role of TiO2 and carbon nanotubes on polyethylene, and effect of accelerated weathering on photo oxidation and mechanical properties. <i>Journal of Vinyl and Additive Technology</i> , 2019 , 25, 19-25	2	4
7	A systematic investigation of the bio-toxicity of core-shell magnetic mesoporous silica microspheres using zebrafish model. <i>Microporous and Mesoporous Materials</i> , 2018 , 265, 195-201	5.3	22

LIST OF PUBLICATIONS

6	Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 428-435	3.2	16
5	Graphene a promising electrode material for supercapacitors review. <i>International Journal of Energy Research</i> , 2018 , 42, 4284-4300	4.5	79
4	Polymer-Based Electrospun Nanofibers for Biomedical Applications. <i>Nanomaterials</i> , 2018 , 8,	5.4	126
3	Thermal Properties of TiONP/CNT/LDPE Hybrid Nanocomposite Films. <i>Polymers</i> , 2018 , 10,	4.5	12
2	Recent Overviews in Functional Polymer Composites for Biomedical Applications. <i>Polymers</i> , 2018 , 10,	4.5	63
1	Mesoporous carbons from self-assembled polymers. Journal of Polymer Science,	2.4	1