Stanislaus J Schymanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?. Hydrology and Earth System Sciences, 2022, 26, 525-550.	1.9	3
2	Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model. Geoscientific Model Development, 2022, 15, 883-900.	1.3	2
3	A hydrologist's guide to open science. Hydrology and Earth System Sciences, 2022, 26, 647-664.	1.9	21
4	Gross primary productivity and water use efficiency are increasing in a high rainfall tropical savanna. Global Change Biology, 2022, 28, 2360-2380.	4.2	11
5	Soil structure recovery following compaction: Shortâ€ŧerm evolution of soil physical properties in a loamy soil. Soil Science Society of America Journal, 2021, 85, 1002-1020.	1.2	20
6	Adding our leaves: A communityâ€wide perspective on research directions in ecohydrology. Hydrological Processes, 2020, 34, 1665-1673.	1.1	3
7	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
8	Two sides to every leaf: water and <scp>CO</scp> ₂ transport in hypostomatous and amphistomatous leaves. New Phytologist, 2019, 222, 1179-1187.	3.5	76
9	Longâ€Term Soil Structure Observatory for Monitoring Postâ€Compaction Evolution of Soil Structure. Vadose Zone Journal, 2017, 16, 1-16.	1.3	63
10	Mechanics and Energetics of Soil Penetration by Earthworms and Plant Roots: Higher Rates Cost More. Vadose Zone Journal, 2017, 16, 1-16.	1.3	20
11	Leaf-scale experiments reveal an important omission in the Penman–Monteith equation. Hydrology and Earth System Sciences, 2017, 21, 685-706.	1.9	33
12	Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences, 2017, 14, 4711-4732.	1.3	45
13	Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves. Hydrology and Earth System Sciences, 2017, 21, 3377-3400.	1.9	8
14	Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits. Hydrology and Earth System Sciences, 2016, 20, 2063-2083.	1.9	33
15	Experimental Evaluation of Earthworm and Plant Root Soil Penetration–Cavity Expansion Models Using Cone Penetrometer Analogs. Vadose Zone Journal, 2016, 15, 1-14.	1.3	13
16	Wind increases leaf water use efficiency. Plant, Cell and Environment, 2016, 39, 1448-1459.	2.8	66
17	Improving the theoretical underpinnings of processâ€based hydrologic models. Water Resources Research, 2016, 52, 2350-2365.	1.7	80
18	Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2concentrations. AoB PLANTS, 2015, 7, plv060.	1.2	19

STANISLAUS J SCHYMANSKI

#	Article	IF	CITATIONS
19	Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils. PLoS ONE, 2015, 10, e0128914.	1.1	67
20	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	1.9	83
21	HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 2014, 18, 4635-4655.	1.9	78
22	Importance of temporal variability for hydrological predictions based on the maximum entropy production principle. Geophysical Research Letters, 2014, 41, 67-73.	1.5	18
23	Stomatal optimisation in relation to atmospheric <scp>CO</scp> ₂ . New Phytologist, 2014, 201, 372-377.	3.5	67
24	Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters, 2014, 41, 7916-7923.	1.5	138
25	"Panta Rhei—Everything Flows― Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	1.2	569
26	Process, correlation and parameter fitting in species distribution models: a response to Kriticos <i>etÂal</i> . Journal of Biogeography, 2013, 40, 612-613.	1.4	8
27	Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations. PLoS ONE, 2013, 8, e54231.	1.1	156
28	Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 2012, 39, 2179-2190.	1.4	48
29	Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 2012, 48, .	1.7	254
30	Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 2012, 39, 2119-2131.	1.4	526
31	HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences, 2011, 15, 635-646.	1.9	82
32	Entropy production of soil hydrological processes and its maximisation. Earth System Dynamics, 2011, 2, 179-190.	2.7	28
33	Quantifying the thermodynamic entropy budget of the land surface: is this useful?. Earth System Dynamics, 2011, 2, 87-103.	2.7	39
34	Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1449-1455.	1.8	39
35	An optimalityâ€based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resources Research, 2009, 45, .	1.7	127
36	Thermodynamics, Irreversibility, and Optimality in Land Surface Hydrology. , 2009, , 107-118.		8

3

#	Article	IF	CITATIONS
37	Modeling the crop transpiration using an optimality-based approach. Science in China Series D: Earth Sciences, 2008, 51, 60-75.	0.9	10
38	Optimality as a Concept to Understand and Model Vegetation at Different Scales. Geography Compass, 2008, 2, 1580-1598.	1.5	17
39	Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters, 2008, 35, .	1.5	93
40	An optimality-based model of the coupled soil moisture and root dynamics. Hydrology and Earth System Sciences, 2008, 12, 913-932.	1.9	127
41	A test of the optimality approach to modelling canopy properties and CO2uptake by natural vegetation. Plant, Cell and Environment, 2007, 30, 1586-1598.	2.8	60
42	A canopy-scale test of the optimal water-use hypothesis. Plant, Cell and Environment, 2007, 31, 071030013314002-???.	2.8	42
43	Wind effects on leaf transpiration challenge the concept of "potential evaporation". Proceedings of the International Association of Hydrological Sciences, 0, 371, 99-107.	1.0	11