Bernard de Massy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling crossover and synaptonemal complex in meiosis. Genes and Development, 2022, 36, 4-6.	5.9	8
2	Four-pronged negative feedback of DSB machinery in meiotic DNA-break control in mice. Nucleic Acids Research, 2021, 49, 2609-2628.	14.5	26
3	Chromosome Organization in Early Meiotic Prophase. Frontiers in Cell and Developmental Biology, 2021, 9, 688878.	3.7	40
4	Transcriptome and translatome co-evolution in mammals. Nature, 2020, 588, 642-647.	27.8	122
5	PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment. ELife, 2020, 9, .	6.0	20
6	Reading the epigenetic code for exchanging DNA. ELife, 2020, 9, .	6.0	4
7	In utero exposure to acetaminophen and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. Communications Biology, 2019, 2, 310.	4.4	18
8	Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes. Molecular Cell, 2019, 74, 1069-1085.e11.	9.7	74
9	PRDM9 Methyltransferase Activity Is Essential for Meiotic DNA Double-Strand Break Formation at Its Binding Sites. Molecular Cell, 2018, 69, 853-865.e6.	9.7	110
10	PRDM9, a driver of the genetic map. PLoS Genetics, 2018, 14, e1007479.	3.5	85
11	Mouse REC114 is essential for meiotic DNA double-strand break formation and forms a complex with MEI4. Life Science Alliance, 2018, 1, e201800259.	2.8	74
12	The PRDM9 KRAB domain is required for meiosis and involved in protein interactions. Chromosoma, 2017, 126, 681-695.	2.2	74
13	In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Research, 2017, 27, 580-590.	5.5	67
14	Birth and death of a protein. ELife, 2017, 6, .	6.0	4
15	Meiosis: To pair and recombine, a sophisticated chromosome dance. Seminars in Cell and Developmental Biology, 2016, 54, 104-105.	5.0	2
16	Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) inÂmice. Nature Cell Biology, 2016, 18, 1208-1220.	10.3	145
17	SKAP, an outer kinetochore protein, is required for mouse germ cell development. Reproduction, 2016, 151, 239-251.	2.6	8
18	A new light on the meiotic DSB catalytic complex. Seminars in Cell and Developmental Biology, 2016, 54, 165-176.	5.0	78

BERNARD DE MASSY

#	Article	IF	CITATIONS
19	MEI4: a central player in the regulation of meiotic DNA double strand break formation in the mouse. Journal of Cell Science, 2015, 128, 1800-11.	2.0	65
20	Meiosis: Early DNA Double-Strand Breaks Pave the Way for Inter-Homolog Repair. Developmental Cell, 2015, 32, 663-664.	7.0	8
21	Diversity of Prdm9 Zinc Finger Array in Wild Mice Unravels New Facets of the Evolutionary Turnover of this Coding Minisatellite. PLoS ONE, 2014, 9, e85021.	2.5	64
22	Hidden features of human hotspots. Science, 2014, 346, 808-809.	12.6	2
23	Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics. Nature Genetics, 2014, 46, 1072-1080.	21.4	110
24	Spp1 Links Sites of Meiotic DNA Double-Strand Breaks to Chromosome Axes. Molecular Cell, 2013, 49, 3-5.	9.7	4
25	Meiotic recombination in mammals: localization and regulation. Nature Reviews Genetics, 2013, 14, 794-806.	16.3	506
26	Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9. Cell Reports, 2013, 5, 13-20.	6.4	100
27	Initiation of Meiotic Recombination: How and Where? Conservation and Specificities Among Eukaryotes. Annual Review of Genetics, 2013, 47, 563-599.	7.6	314
28	Dissecting the Structure and Mechanism of a Complex Duplication-Triplication Rearrangement in the <i>DMD</i> Gene. Human Mutation, 2013, 34, 1080-1084.	2.5	31
29	Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Current Opinion in Genetics and Development, 2013, 23, 147-155.	3.3	116
30	SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing. PLoS Genetics, 2013, 9, e1003538.	3.5	69
31	Interallelic and Intergenic Incompatibilities of the Prdm9 (Hst1) Gene in Mouse Hybrid Sterility. PLoS Genetics, 2012, 8, e1003044.	3.5	68
32	The Impressionistic Landscape of Meiotic Recombination. Cell, 2011, 147, 267-270.	28.9	69
33	Mouse PRDM9 DNA-Binding Specificity Determines Sites of Histone H3 Lysine 4 Trimethylation for Initiation of Meiotic Recombination. PLoS Biology, 2011, 9, e1001176.	5.6	187
34	Initiation of Meiotic Recombination in Mammals. Genes, 2010, 1, 521-549.	2.4	15
35	Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes and Development, 2010, 24, 1266-1280.	5.9	184
36	Genome-Wide Control of the Distribution of Meiotic Recombination. PLoS Biology, 2009, 7, e1000035.	5.6	70

BERNARD DE MASSY

#	Article	IF	CITATIONS
37	Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO Journal, 2009, 28, 2616-2624.	7.8	195
38	Cis- and Trans-Acting Elements Regulate the Mouse Psmb9 Meiotic Recombination Hotspot. PLoS Genetics, 2007, 3, e100.	3.5	74
39	Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Research, 2007, 15, 565-577.	2.2	185
40	An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 1997, 386, 414-417.	27.8	853