Yuan-Ming Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849767/publications.pdf

Version: 2024-02-01

840776 1058476 14 424 11 14 citations h-index g-index papers 14 14 14 821 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Defect Engineering in Ambipolar Layered Materials for Modeâ€Regulable Nociceptor. Advanced Functional Materials, 2021, 31, 2007587.	14.9	19
2	Facile and Reversible Carrier-Type Manipulation of Layered MoTe ₂ Toward Long-Term Stable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 42918-42924.	8.0	4
3	Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nature Communications, 2020, 11, 2972.	12.8	83
4	A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications. Small, 2019, 15, 1900865.	10.0	2
5	Multifunctional full-visible-spectrum optoelectronics based on a van der Waals heterostructure. Nano Energy, 2019, 66, 104107.	16.0	28
6	Analog Circuit Applications Based on Allâ€2D Ambipolar ReSe ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1809011.	14.9	36
7	Probing Charge Transport Difference in Parallel and Vertical Layered Electronics with Thin Graphite Source/Drain Contacts. Scientific Reports, 2019, 9, 20087.	3.3	1
8	Oxygen-Sensitive Layered MoTe ₂ Channels for Environmental Detection. ACS Applied Materials & Detection. ACS Applied & Detection. ACS Applied Materials & Detection. ACS Applied Mate	8.0	13
9	Atomically thin van der Waals tunnel field-effect transistors and its potential for applications. Nanotechnology, 2019, 30, 105201.	2.6	17
10	Reversible and Precisely Controllable p/nâ€Type Doping of MoTe ₂ Transistors through Electrothermal Doping. Advanced Materials, 2018, 30, e1706995.	21.0	68
11	Negative-Differential-Resistance Devices Achieved by Band-Structure Engineering in Silicene under Periodic Potentials. Physical Review Applied, 2018, 10, .	3.8	19
12	High Mobilities in Layered InSe Transistors with Indiumâ€Encapsulationâ€Induced Surface Charge Doping. Advanced Materials, 2018, 30, e1803690.	21.0	101
13	Broadband Omnidirectional Light Trapping in Gold-Decorated ZnO Nanopillar Arrays. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11985-11992.	8.0	13
14	Two-dimensional MoTe ₂ materials: From synthesis, identification, and charge transport to electronics applications. Japanese Journal of Applied Physics, 2016, 55, 1102A1.	1.5	20