

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458, 1158-1162.	27.8	2,245
2	Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 2009, 458, 1163-1166.	27.8	1,282
3	Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 2005, 433, 403-406.	27.8	994
4	Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 2017, 10, 741-747.	12.9	422
5	Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 2006, 440, 1029-1032.	27.8	343
6	A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	230
7	Improved calculation of warming-equivalent emissions for short-lived climate pollutants. Npj Climate and Atmospheric Science, 2019, 2, 29.	6.8	162
8	Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nature Climate Change, 2011, 1, 407-412.	18.8	151
9	A real-time Global Warming Index. Scientific Reports, 2017, 7, 15417.	3.3	145
10	Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.	3.9	139
11	Constraining climate forecasts: The role of prior assumptions. Geophysical Research Letters, 2005, 32, ·	4.0	135
12	Constraints on climate change from a multi-thousand member ensemble of simulations. Geophysical Research Letters, 2005, 32, .	4.0	130
13	Sensitivity of Twentieth-Century Sahel Rainfall to Sulfate Aerosol and CO ₂ Forcing. Journal of Climate, 2011, 24, 4999-5014.	3.2	125
14	Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geoscience, 2012, 5, 256-260.	12.9	109
15	Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environmental Research Letters, 2016, 11, 055007.	5.2	108
16	Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought. Climatic Change, 2020, 162, 781-797.	3.6	93
17	Call Off the Quest. Science, 2007, 318, 582-583.	12.6	90
18	The role of short-lived climate pollutants in meeting temperature goals. Nature Climate Change, 2013, 3, 1021-1024.	18.8	89

D J Frame

#	Article	IF	CITATIONS
19	Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown. Geophysical Research Letters, 2020, 47, e2019GL086259.	4.0	76
20	Transmission of climate risks across sectors and borders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170301.	3.4	74
21	Expert judgments about transient climate response to alternative future trajectories of radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12451-12456.	7.1	71
22	The economic costs of Hurricane Harvey attributable to climate change. Climatic Change, 2020, 160, 271-281.	3.6	69
23	Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12259-12264.	7.1	65
24	Constraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes. Journal of Climate, 2008, 21, 2384-2400.	3.2	57
25	Population-based emergence of unfamiliarÂclimates. Nature Climate Change, 2017, 7, 407-411.	18.8	57
26	Stable climate metrics for emissions of short and long-lived species—combining steps and pulses. Environmental Research Letters, 2020, 15, 024018.	5.2	54
27	Embracing uncertainty in climate change policy. Nature Climate Change, 2015, 5, 917-920.	18.8	53
28	Discursive stability meets climate instability: A critical exploration of the concept of â€ [~] climate stabilization' in contemporary climate policy. Global Environmental Change, 2010, 20, 53-64.	7.8	49
29	Comment on "Heat capacity, time constant, and sensitivity of Earth's climate system―by S. E. Schwartz. Journal of Geophysical Research, 2008, 113, .	3.3	48
30	Emissions from the road transport sector of New Zealand: key drivers and challenges. Environmental Science and Pollution Research, 2019, 26, 23937-23957.	5.3	43
31	Alternatives to stabilization scenarios. Geophysical Research Letters, 2006, 33, .	4.0	41
32	Probabilistic climate forecasts and inductive problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1971-1992.	3.4	34
33	The case for mandatory sequestration. Nature Geoscience, 2009, 2, 813-814.	12.9	33
34	How Uneven Are Changes to Impactâ€Relevant Climate Hazards in a 1.5 °C World and Beyond?. Geophysical Research Letters, 2018, 45, 6672-6680.	4.0	33
35	On the attribution of the impacts of extreme weather events to anthropogenic climate change. Environmental Research Letters, 2022, 17, 024009.	5.2	32
36	The climate <i>prediction</i> .net BBC climate change experiment: design of the coupled model ensemble. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 855-870.	3.4	31

D J Frame

#	Article	IF	CITATIONS
37	Acceptability of transport emissions reduction policies: A multi-criteria analysis. Renewable and Sustainable Energy Reviews, 2020, 133, 110298.	16.4	31
38	Assessment of the first consensus prediction on climateÂchange. Nature Climate Change, 2013, 3, 357-359.	18.8	29
39	Cumulative emissions and climate policy. Nature Geoscience, 2014, 7, 692-693.	12.9	29
40	Model error in weather and climate forecasting. , 2006, , 391-427.		24
41	The exit strategy. Nature Climate Change, 2009, 1, 56-58.	18.8	24
42	Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 45-66.	3.4	24
43	How far ahead could we predict El Niño?. Geophysical Research Letters, 2002, 29, 130-1-130-4.	4.0	23
44	The problems of markets: science, norms and the commodification of carbon. Geographical Journal, 2011, 177, 138-148.	3.1	23
45	Costs and emissions: Comparing electric and petrol-powered cars in New Zealand. Transportation Research, Part D: Transport and Environment, 2021, 90, 102671.	6.8	22
46	The question of life, the universe and event attribution. Nature Climate Change, 2021, 11, 276-278.	18.8	21
47	Toward an Inventory of the Impacts of Human-Induced Climate Change. Bulletin of the American Meteorological Society, 2020, 101, E1972-E1979.	3.3	21
48	Wetter then drier in some tropical areas. Nature Climate Change, 2014, 4, 646-647.	18.8	19
49	Investigating eventâ€specific drought attribution using selfâ€organizing maps. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,766.	3.3	17
50	Data access and analysis with distributed federated data servers in climate <i>prediction</i> .net. Advances in Geosciences, 0, 8, 49-56.	12.0	15
51	Methane and the Paris Agreement temperature goals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200456.	3.4	14
52	Changes in the Global Sulfate Burden due to Perturbations in Global CO2 Concentrations. Journal of Climate, 2009, 22, 5421-5432.	3.2	12
53	Seasonal cycles enhance disparities between low- and high-income countries in exposure to monthly temperature emergence with future warming. Environmental Research Letters, 2017, 12, 114039.	5.2	12
54	Emissions and emergence: a new index comparing relative contributions to climate change with relative climatic consequences. Environmental Research Letters, 2019, 14, 084009.	5.2	12

D J Frame

#	Article	IF	CITATIONS
55	Regional probabilistic climate forecasts from a multithousand, multimodel ensemble of simulations. Journal of Geophysical Research, 2007, 112, .	3.3	11
56	Nonlinear response of Asian summer monsoon precipitation to emission reductions in South and East Asia. Environmental Research Letters, 2022, 17, 014005.	5.2	11
57	Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective. Sustainability, 2021, 13, 5568.	3.2	10
58	Hydrogen deficient binaries - photometry and orbits. Monthly Notices of the Royal Astronomical Society, 1995, 276, 383-396.	4.4	9
59	Transient and Quasiâ€Equilibrium Climate States at 1.5°C and 2°C Global Warming. Earth's Future, 2021, 9, e2021EF002274.	6.3	9
60	Quantifying the effects of perturbing the physics of an interactive sulfur scheme using an ensemble of GCMs on the climateprediction.net platform. Journal of Geophysical Research, 2009, 114, .	3.3	8
61	Reply to â€~Interpretations of the Paris climate target'. Nature Geoscience, 2018, 11, 222-222.	12.9	8
62	Aotearoa New Zealand's 21stâ \in Century Wildfire Climate. Earth's Future, 2022, 10, .	6.3	8
63	Curbing the car: the mitigation potential of a higher carbon price in the New Zealand transport sector. Climate Policy, 2020, 20, 563-576.	5.1	7
64	Comment on â€~Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'. Environmental Research Letters, 2021, 16, 068001.	5.2	7
65	Influence of Ozone Forcing on 21st Century Southern Hemisphere Surface Westerlies in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	4.0	7
66	Integrating attribution with adaptation for unprecedented future heatwaves. Climatic Change, 2022, 172, 1.	3.6	7
67	An issue of trust: state corruption, responsibility and greenhouse gas emissions. Environmental Research Letters, 2010, 5, 014004.	5.2	3
68	Climate system properties determining the social cost of carbon. Environmental Research Letters, 2013, 8, 024032.	5.2	3
69	A new technique for evaluating mesospheric momentum balance utilizing radars and satellite data. Annales Geophysicae, 2000, 18, 478-484.	1.6	2
70	Uncertainty in climate-sensitivity estimates (Reply). Nature, 2007, 446, E2-E2.	27.8	2
71	Emerging Markets and Climate Change: Mexican Standâ€off or Lowâ€carbon Race?. , 2012, , 147-170.		1
72	A comparison between mesospheric wind measurements made near Christchurch (44°S, 173°E) using the high resolution doppler imager (HRDI) and a medium frequency (MF) radar. Annales Geophysicae, 2000, 18, 555-565.	1.6	0

#	Article	lF	CITATIONS
73	Correction to $\hat{a} \in \infty$ Alternatives to stabilization scenarios $\hat{a} \in \mathbf{e}$ Geophysical Research Letters, 2012, 39, .	4.0	Ο
74	Understanding Road Transport Emissions Reduction Policies Using Multi-criteria Analysis. , 2021, , 1-21.		0
75	Automaticity and delegation in climate targets. Environmental Research Letters, 2021, 16, 044049.	5.2	Ο
76	Understanding Road Transport Emissions Reduction Policies Using Multi-criteria Analysis. , 2022, , 3203-3223.		0

D J FRAME