
Hao-Fan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849426/publications.pdf

Version: 2024-02-01

HAO-FAN WANC

#	Article	IF	CITATIONS
1	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
2	Topological Defects in Metalâ€Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 2016, 28, 6845-6851.	11.1	629
3	Defect Engineering toward Atomic Co–N <i>_x</i> –C in Hierarchical Graphene for Rechargeable Flexible Solid Znâ€Air Batteries. Advanced Materials, 2017, 29, 1703185.	11.1	614
4	Spatially Confined Hybridization of Nanometer‧ized NiFe Hydroxides into Nitrogenâ€Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials, 2015, 27, 4516-4522.	11.1	612
5	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ°'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	7.8	524
6	Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 2018, 51, 881-889.	7.6	437
7	Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019, 1, 565-595.	5.0	383
8	CaOâ€Templated Growth of Hierarchical Porous Graphene for Highâ€Power Lithium–Sulfur Battery Applications. Advanced Functional Materials, 2016, 26, 577-585.	7.8	355
9	Bifunctional Transition Metal Hydroxysulfides: Roomâ€Temperature Sulfurization and Their Applications in Zn–Air Batteries. Advanced Materials, 2017, 29, 1702327.	11.1	334
10	From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy and Environmental Science, 2020, 13, 1658-1693.	15.6	323
11	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
12	A Nanosized CoNi Hydroxide@Hydroxysulfide Core–Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 2019, 31, e1805658.	11.1	203
13	Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 7245-7250.	5.2	178
14	3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Advanced Materials, 2018, 30, 1705110.	11.1	171
15	Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Materials, 2018, 15, 124-130.	9.5	162
16	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	7.1	154
17	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 24540-24546.	5.2	124
18	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 521-534.	3.0	123

HAO-FAN WANG

#	Article	IF	CITATIONS
19	A Gasâ€Steamed MOF Route to Pâ€Doped Open Carbon Cages with Enhanced Znâ€Ion Energy Storage Capability and Ultrastability. Advanced Materials, 2021, 33, e2101698.	11.1	120
20	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle and Particle Systems Characterization, 2016, 33, 473-486.	1.2	106
21	Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation. Nature Communications, 2017, 8, 934.	5.8	102
22	Oxygen Reduction Reaction on Graphene in an Electroâ€Fenton System: Inâ€Situ Generation of H ₂ O ₂ for the Oxidation of Organic Compounds. ChemSusChem, 2016, 9, 1194-1199.	3.6	93
23	Anionâ€Regulated Hydroxysulfide Monoliths as OER/ORR/HER Electrocatalysts and their Applications in Selfâ€Powered Electrochemical Water Splitting. Small Methods, 2018, 2, 1800055.	4.6	91
24	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	13.1	82
25	An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Science Advances, 2016, 2, e1600495.	4.7	75
26	Template growth of nitrogen-doped mesoporous graphene on metal oxides and its use as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Catalysis Today, 2018, 301, 25-31.	2.2	71
27	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66
28	Micro/Nanoâ€ S caled Metalâ€ O rganic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64
29	Core-branch CoNi hydroxysulfides with versatilely regulated electronic and surface structures for superior oxygen evolution electrocatalysis. Journal of Energy Chemistry, 2019, 38, 8-14.	7.1	63
30	Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. Journal of Materials Chemistry A, 2016, 4, 3210-3216.	5.2	62
31	A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today, 2019, 25, 27-37.	6.2	59
32	A â€~point–line–point' hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 3379-3385.	5.2	56
33	Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. Journal of Materials Chemistry A, 2015, 3, 16183-16189.	5.2	54
34	Fluidizedâ€bed CVD of unstacked doubleâ€layer templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61, 747-755.	1.8	48
35	Nitrogen-doped herringbone carbon nanofibers with large lattice spacings and abundant edges: Catalytic growth and their applications in lithium ion batteries and oxygen reduction reactions. Catalysis Today, 2015, 249, 244-251.	2.2	48
36	Hollow Spherical Superstructure of Carbon Nanosheets for Bifunctional Oxygen Reduction and Evolution Electrocatalysis. Nano Letters, 2021, 21, 3640-3648.	4.5	48

HAO-FAN WANG

#	Article	IF	CITATIONS
37	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
38	Freestanding Nonâ€Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemElectroChem, 2018, 5, 1786-1804.	1.7	32
39	The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon, 2016, 103, 36-44.	5.4	30
40	Highâ€Power Microbial Fuel Cells Based on a Carbon–Carbon Composite Air Cathode. Small, 2020, 16, e1905240.	5.2	15
41	Multianion Transition Metal Compounds: Synthesis, Regulation, and Electrocatalytic Applications. Accounts of Materials Research, 2021, 2, 1082-1092.	5.9	13
42	SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. New Carbon Materials, 2017, 32, 509-516.	2.9	11
43	Oxygen Electrocatalysis: Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis (Adv. Mater. 32/2016). Advanced Materials, 2016, 28, 7030-7030.	11.1	10
44	Catalysis: Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity (Adv. Mater. 30/2015). Advanced Materials, 2015, 27, 4524-4524.	11.1	8
45	Revealing Active Function of Multicomponent Electrocatalysts from In Situ Nickel Redox for Oxygen Evolution. Journal of Physical Chemistry C, 2021, 125, 16420-16427.	1.5	5