
Long Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2849029/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Molecular‣evel Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials, 2009, 19, 2297-2302.	14.9	1,481
2	A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy and Environmental Science, 2013, 6, 1623.	30.8	875
3	Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Scientific Reports, 2013, 3, 1408.	3.3	582
4	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	12.8	458
5	Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon, 2009, 47, 3365-3368.	10.3	414
6	A Highâ€Performance Graphene Oxideâ€Doped Ion Gel as Gel Polymer Electrolyte for Allâ€Solidâ€State Supercapacitor Applications. Advanced Functional Materials, 2013, 23, 3353-3360.	14.9	356
7	Infrared-Triggered Actuators from Graphene-Based Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 9921-9927.	3.1	355
8	Controlling the Effective Surface Area and Pore Size Distribution of sp ² Carbon Materials and Their Impact on the Capacitance Performance of These Materials. Journal of the American Chemical Society, 2013, 135, 5921-5929.	13.7	291
9	Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6, 581-592.	10.4	204
10	High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon, 2015, 92, 106-118.	10.3	159
11	Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon, 2010, 48, 2367-2371.	10.3	156
12	Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator. Nano Energy, 2015, 12, 597-605.	16.0	83
13	A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combustion and Flame, 2019, 204, 220-226.	5.2	80
14	Toward All-Carbon Electronics: Fabrication of Graphene-Based Flexible Electronic Circuits and Memory Cards Using Maskless Laser Direct Writing. ACS Applied Materials & Interfaces, 2010, 2, 3310-3317.	8.0	55
15	Gram-Scale Synthesis of Graphene Quantum Dots from Single Carbon Atoms Growth via Energetic Material Deflagration. Chemistry of Materials, 2015, 27, 4319-4327.	6.7	54
16	An effective way to enhance energy output and combustion characteristics of Al/PTFE. Combustion and Flame, 2020, 214, 419-425.	5.2	44
17	High performance Li-ion capacitor fabricated with dual graphene-based materials. Nanotechnology, 2021, 32, 015403.	2.6	32
18	Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors. Science Bulletin, 2014, 59, 1809-1815.	1.7	23

LONG ZHANG

#	Article	IF	CITATIONS
19	Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon, 2019, 145, 281-289.	10.3	22
20	Review on the laser-induced performance of photothermal materials for ignition application. Energetic Materials Frontiers, 2021, 2, 201-217.	3.2	21
21	What are the practical limits for the specific surface area and capacitance of bulk sp2 carbon materials?. Science China Chemistry, 2016, 59, 225-230.	8.2	17
22	Self-assembly of TATB 3D architectures via micro-channel crystallization and a formation mechanism. CrystEngComm, 2016, 18, 1953-1957.	2.6	15
23	A free-standing laser energy converter based on energetic graphene oxide for enhanced photothermic ignition. Journal of Materials Chemistry A, 2018, 6, 13761-13768.	10.3	14
24	Polytetrafluoroethyleneâ€intercalated MXene membranes with good photothermal performance for enhanced laser ignition. Journal of Applied Polymer Science, 2020, 137, 49137.	2.6	9
25	Studies on the thermal behavior and safety of a novel thermostable explosive BPTAP. RSC Advances, 2019, 9, 22198-22204.	3.6	8
26	Sol–Gel Autocombustion Synthesis of Graphene/Cobalt Magnetic Nanocomposites. Journal of Nanoscience and Nanotechnology, 2013, 13, 1129-1131.	0.9	7
27	Study on laser ignition characteristics of graphene Oxide/Cyclotrimethylene trinitramine composite films. Applied Surface Science, 2021, 564, 150451.	6.1	7
28	Highly Reactive PTFE/Mg Nanolaminates and Its Combustion Performances. Advanced Materials Interfaces, 2019, 6, 1900113.	3.7	6
29	Freestanding graphene oxide-polytetrafluoroethylene membranes with excellent photothermic performance for laser ignition. Materials Letters, 2020, 270, 127691.	2.6	5
30	Fabrication of GO/NH4NO3 composite films by vacuum filtration as laser converter for enhanced photothermal performance. Energetic Materials Frontiers, 2020, 1, 195-200.	3.2	5
31	Self-assembly of 3D porous architectures from energetic nanoparticles for enhanced energetic performances. CrystEngComm, 2018, 20, 6387-6393.	2.6	4
32	Design of a graphene-based core–shell structure for the improvement of photothermic performance. Journal Physics D: Applied Physics, 2020, 53, 025303.	2.8	3
33	MgAl Hydride Films for Enhanced Energy Conversion Efficiency of a Laserâ€Driven Flyer. Advanced Engineering Materials, 2021, 23, 2000745.	3.5	3
34	One-step and low-temperature synthesis of carbon nanotubes with no post treatment and high purity. RSC Advances, 2015, 5, 78917-78919.	3.6	1
35	Packaging IGBT modules by rapid sintering of nanosilver paste in a current way. , 2017, , .		1
36	Ultralow Angle Bevel-Etched Junction Termination Extension for High Voltage SiC Power Devices. , 2018, , .		1

LONG ZHANG

#	Article	IF	CITATIONS
37	Design of Laser Photothermal Conversion Membranes Based on Fluorinated Graphene. Membranes, 2022, 12, 135.	3.0	1
38	Promoting the combustion properties of boron powder through inâ \in situ coating. Nano Select, 0, , .	3.7	1
39	Fault diagnosis for power units of cascaded inverters based on combined neural network. , 2013, , .		0
40	Porous Carbon Materials with Ultrahigh Surface Area for High Energy Density Supercapacitors and High Power Density Electrochemical Thermocell ECS Meeting Abstracts, 2019, , .	0.0	0