

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/284881/publications.pdf Version: 2024-02-01

Fei Vii

#	Article	IF	CITATIONS
1	Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature, 2016, 538, 84-87.	27.8	647
2	Progress and perspectives in converting biogas to transportation fuels. Renewable and Sustainable Energy Reviews, 2014, 40, 1133-1152.	16.4	315
3	Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus. Energy Conversion and Management, 2017, 153, 641-648.	9.2	179
4	lron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chemistry, 2013, 15, 1631.	9.0	171
5	Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer–Tropsch to Olefin Reactions. ACS Catalysis, 2017, 7, 3622-3631.	11.2	157
6	Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion. Catalysts, 2012, 2, 303-326.	3.5	153
7	Restickable Oxide Neuromorphic Transistors with Spikeâ€Timingâ€Dependent Plasticity and Pavlovian Associative Learning Activities. Advanced Functional Materials, 2018, 28, 1804025.	14.9	139
8	Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities. ACS Applied Materials & Interfaces, 2018, 10, 16881-16886.	8.0	120
9	Fischer–Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193, 369-384.	6.4	101
10	Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Applied Catalysis A: General, 2015, 491, 116-126.	4.3	94
11	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie - International Edition, 2019, 58, 4627-4631.	13.8	92
12	Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Applied Catalysis B: Environmental, 2019, 254, 612-623.	20.2	92
13	Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Journal of Environmental Management, 2015, 154, 177-182.	7.8	84
14	Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood. Energy & Fuels, 2011, 25, 3758-3764.	5.1	83
15	A two-stage chance-constrained stochastic programming model for a bio-fuel supply chain network. International Journal of Production Economics, 2018, 195, 27-44.	8.9	83
16	Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type. Energy Conversion and Management, 2016, 112, 319-327.	9.2	82
17	Elucidating the Copper–HÃ g g Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols. ACS Catalysis, 2017, 7, 5500-5512.	11.2	82
18	Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst. Applied Catalysis A: General, 2012, 429-430, 48-58.	4.3	79

#	Article	IF	CITATIONS
19	Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co ₂ C Nanoprisms for Fischer–Tropsch to Olefins Reaction. ACS Catalysis, 2017, 7, 8023-8032.	11.2	79
20	Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Angewandte Chemie, 2019, 131, 4675-4679.	2.0	65
21	Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst. Bioresource Technology, 2013, 127, 281-290.	9.6	64
22	High Selectivity Higher Alcohols Synthesis from Syngas over Threeâ€Dimensionally Ordered Macroporous Cuâ€Fe Catalysts. ChemCatChem, 2014, 6, 473-478.	3.7	64
23	Advances in direct production of value-added chemicals via syngas conversion. Science China Chemistry, 2017, 60, 887-903.	8.2	62
24	Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Accounts of Chemical Research, 2021, 54, 1961-1971.	15.6	54
25	Pyrolytic spray increases levoglucosan production during fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 100, 33-40.	5.5	52
26	Synthesis of Aromatic-Rich Gasoline-Range Hydrocarbons from Biomass-Derived Syngas over a Pd-Promoted Fe/HZSM-5 Catalyst. Energy & Fuels, 2014, 28, 2027-2034.	5.1	52
27	Dendrite Integration Mimicked on Starch-Based Electrolyte-Gated Oxide Dendrite Transistors. ACS Applied Materials & Interfaces, 2018, 10, 40008-40013.	8.0	49
28	Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Applied Biochemistry and Biotechnology, 2007, 137-140, 957-970.	2.9	48
29	Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC) and their application to convert bio-syngas into liquid hydrocarbons. Biomass and Bioenergy, 2015, 83, 85-95.	5.7	46
30	Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption. ACS Applied Materials & Interfaces, 2019, 11, 28352-28358.	8.0	46
31	Particle Size Effects of Cobalt Carbide for Fischer–Tropsch to Olefins. ACS Catalysis, 2019, 9, 798-809.	11.2	45
32	Bilayered Oxideâ€Based Cognitive Memristor with Brainâ€Inspired Learning Activities. Advanced Electronic Materials, 2019, 5, 1900439.	5.1	43
33	Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Catalysis Science and Technology, 2015, 5, 3270-3280.	4.1	42
34	Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory. ACS Applied Materials & Interfaces, 2020, 12, 7833-7839.	8.0	41
35	NH3-SCR denitration catalyst performance over vanadium–titanium with the addition of Ce and Sb. Journal of Environmental Sciences, 2015, 31, 74-80.	6.1	40
36	Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts. Molecular Catalysis, 2017, 436, 248-258.	2.0	39

#	Article	IF	CITATIONS
37	Non-thermal plasma enhanced dry reforming of CH4 with CO2 over activated carbon supported Ni catalysts. Molecular Catalysis, 2019, 475, 110486.	2.0	38
38	Fischer–Tropsch synthesis of liquid hydrocarbons over mesoporous SBA-15 supported cobalt catalysts. RSC Advances, 2015, 5, 59792-59803.	3.6	36
39	Inhibitors removal from bio-oil aqueous fraction for increased ethanol production. Bioresource Technology, 2014, 161, 379-384.	9.6	35
40	Liquefaction of Corn Stover and Preparation of Polyester From the Liquefied Polyol. Applied Biochemistry and Biotechnology, 2006, 130, 574-585.	2.9	34
41	Sustainable olefin supply chain network design under seasonal feedstock supplies and uncertain carbon tax rate. Journal of Cleaner Production, 2019, 222, 280-299.	9.3	34
42	Natural gas reforming of carbon dioxide for syngas over Ni–Ce–Al catalysts. International Journal of Hydrogen Energy, 2017, 42, 18364-18374.	7.1	33
43	Effect of Acid, Steam Explosion, and Size Reduction Pretreatments on Bio-oil Production from Sweetgum, Switchgrass, and Corn Stover. Applied Biochemistry and Biotechnology, 2012, 167, 285-297.	2.9	31
44	Effect of Sodium on the Structureâ€Performance Relationship of Co/ <scp>SiO₂</scp> for Fischerâ€Tropsch Synthesis. Chinese Journal of Chemistry, 2017, 35, 918-926.	4.9	31
45	Effect of Reaction Pressures on Structure–Performance of Co ₂ C-Based Catalyst for Syngas Conversion. Industrial & Engineering Chemistry Research, 2018, 57, 15647-15653.	3.7	31
46	Flexible Poly(Vinyl Alcohol)–Graphene Oxide Hybrid Nanocomposite Based Cognitive Memristor with Pavlovianâ€Conditioned Reflex Activities. Advanced Electronic Materials, 2020, 6, 1901402.	5.1	31
47	Detoxification and Fermentation of Pyrolytic Sugar for Ethanol Production. Applied Biochemistry and Biotechnology, 2012, 168, 1568-1583.	2.9	28
48	K-promoted Mo/Co- and Mo/Ni-catalyzed Fischer–Tropsch synthesis of aromatic hydrocarbons with and without a Cu water gas shift catalyst. Applied Catalysis A: General, 2014, 480, 93-99.	4.3	28
49	Atmospheric Pressure Liquefaction of Dried Distillers Grains (DDG) and Making Polyurethane Foams from Liquefied DDG. Applied Biochemistry and Biotechnology, 2008, 148, 235-243.	2.9	24
50	Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods. Applied Catalysis A: General, 2020, 592, 117414.	4.3	22
51	Characteristics of Coal and Pine Sawdust Co-carbonization. Energy & amp; Fuels, 2014, 28, 848-857.	5.1	21
52	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	9.0	21
53	Non-thermal plasma-enhanced dry reforming of methane and CO2 over Ce-promoted Ni/C catalysts. Molecular Catalysis, 2020, 485, 110821.	2.0	21
54	Direct Conversion of Syngas to Higher Alcohols over Multifunctional Catalyst: The Role of Copper-Based Component and Catalytic Mechanism. Journal of Physical Chemistry C, 2021, 125, 6137-6146.	3.1	20

#	Article	IF	CITATIONS
55	Effects of biochar mixtures with pine-bark based substrates on growth and development of horticultural crops. Horticulture Environment and Biotechnology, 2018, 59, 345-354.	2.1	19
56	Catalytic Conversion of Biogas to Syngas via Dry Reforming Process. Advances in Bioenergy, 2018, , 43-76.	1.3	18
57	Highly Selective Photocatalytic Aerobic Oxidation of Methane to Oxygenates with Water over Wâ€doped TiO ₂ . ChemSusChem, 2022, 15, .	6.8	18
58	Synthesis of gasoline-range hydrocarbons from nitrogen-rich syngas over a Mo/HZSM-5 bi-functional catalyst. Journal of the Energy Institute, 2016, 89, 782-792.	5.3	17
59	The effect of syngas composition on the Fischer Tropsch synthesis over three-dimensionally ordered macro-porous iron based catalyst. Molecular Catalysis, 2017, 440, 175-183.	2.0	17
60	Reaction Kinetics of Stover Liquefaction in Recycled Stover Polyol. Applied Biochemistry and Biotechnology, 2006, 130, 563-573.	2.9	16
61	Biohydrogen production through fermentation using liquid swine manure as substrate. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 393-401.	1.5	16
62	Catalytic removal of oxygen from biomass-derived syngas. Bioresource Technology, 2013, 147, 117-123.	9.6	16
63	Supply Chain Design and Management for Syngas Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 890-900.	6.7	16
64	Ionotronic Neuromorphic Devices for Bionic Neural Network Applications. Physica Status Solidi - Rapid Research Letters, 2019, 13, .	2.4	16
65	Kinetic study of methane reforming with carbon dioxide over NiCeMgAl bimodal pore catalyst. AICHE Journal, 2017, 63, 2019-2029.	3.6	15
66	Mesoporous Ni(OH) ₂ /CeNi _{<i>x</i>} O _{<i>y</i>} Composites Derived Ni/CeNi _{<i>x</i>} O _{<i>y</i>} Catalysts for Dry Reforming of Methane. ChemCatChem, 2018, 10, 250-258.	3.7	15
67	Electrolyte Gated Oxide Pseudodiode for Inhibitory Synapse Applications. Advanced Electronic Materials, 2018, 4, 1800371.	5.1	14
68	Mechanism and Performance of the SCR of NO with NH3 over Sulfated Sintered Ore Catalyst. Catalysts, 2019, 9, 90.	3.5	14
69	Catalytic upgrading nitrogen-riched wood syngas to liquid hydrocarbon mixture over a Fe–Pd/ZSM-5 catalyst. Biomass and Bioenergy, 2012, 47, 469-473.	5.7	13
70	The Addition of Water to Extract Maximum Levoglucosan from the Bio-oil Produced via Fast Pyrolysis of Pretreated Loblolly Pinewood. BioResources, 2013, 8, .	1.0	13
71	Material Balance and Energy Balance Analysis for Syngas Generation by a Pilot-Plant Scale Downdraft Gasifier. Journal of Biobased Materials and Bioenergy, 2013, 7, 690-695.	0.3	13
72	Gasoline-range hydrocarbon production using biomass derived synthesis gas over Mo/H+ZSM-5. Fuel, 2012, 96, 239-249.	6.4	12

#	Article	IF	CITATIONS
73	Effect of pine wood biochar mixed with two types of compost on growth of bell pepper (Capsicum) Tj ETQq1	l 0.784314 2.1	rgBT_/Overloc
74	Direct production of olefins <i>via</i> syngas conversion over Co ₂ C-based catalyst in slurry bed reactor. RSC Advances, 2019, 9, 4131-4139.	3.6	10
75	Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content. Applied Catalysis A: General, 2022, 635, 118552.	4.3	10
76	Production of high-value products including gasoline hydrocarbons from the thermochemical conversion of syngas. Biofuels, 2011, 2, 677-691.	2.4	9
77	Direct synthesis of higher alcohols from syngas over modified Mo ₂ C catalysts under mild reaction conditions. Catalysis Science and Technology, 2022, 12, 1697-1708.	4.1	9
78	Insight into the phase evolution of a NiMgAl catalyst from the reduction stage to the post-reaction stage during the dry reforming of methane. Chemical Communications, 2017, 53, 6001-6004.	4.1	6
79	The Influence of Texture on Co/SBA–15 Catalyst Performance for Fischer–Tropsch Synthesis. Catalysts, 2018, 8, 661.	3.5	6
80	Effects of alkaline-earth metals on CoMn-based catalysts for the Fischer–Tropsch synthesis to olefins. Catalysis Science and Technology, 2022, 12, 2677-2687.	4.1	6
81	Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues. Energies, 2013, 6, 4418-4428.	3.1	5
82	Size effect of CoxMn1-xO precursor for Fischer-Tropsch to olefins over Co2C-based catalysts. Catalysis Science and Technology, 0, , .	4.1	5
83	Oxygen removal from syngas by catalytic oxidation of copper catalyst. Journal of the Energy Institute, 2014, 87, 246-252.	5.3	3
84	The Reaction Mechanism and Its Kinetic Model of CO2 Reforming with CH4 over Ni-Mg15@HC Catalyst. Catalysis Letters, 2020, 150, 1479-1488.	2.6	3
85	Effects of Noble Metals on a Co ₂ C-Based Supported Catalyst for Fischer–Tropsch to Olefins. Industrial & Engineering Chemistry Research, 2022, 61, 4824-4831.	3.7	3
86	Effect of Treated Time of Hydrothermal Etching Process on Oxide Layer Formation and Its Antibacterial Properties. Biomimetics, 2022, 7, 91.	3.3	2
87	Direct Conversion Biogas to Multiwall Carbon Nanotubes and Syngas over Starch Derived Ni@C Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1829-1830.	0.4	1
88	Pilot-Plant Production of Gas-to-Liquid Synthetic Fuel Using Gasified Biomass over a Novel Biochar-Supported Catalyst. Transactions of the ASABE, 2016, 59, 1485-1496.	1.1	1
89	The complete chloroplast genome of aquilegia rockii, an endemic herb plant in Western China. Mitochondrial DNA Part B: Resources, 2019, 4, 1737-1738.	0.4	1
90	Hydrodeoxygenation (HDO) of Bio-oil Model Compounds with Synthesis Gas Using a Water–Gas Shift Catalyst with a Mo/Co/K Catalyst. , 2015, , 1-34.		1

#		IF	CITATIONS
TT			CHAHONS
91	Synthesis and Characterization of Two Novel Stigmasterol-Based Cationic Lipids. Letters in Organic Chemistry, 2008, 5, 313-315.	0.5	0
92	Scale-Up of Liquid Hydrocarbon Production using Gasified Biomass. , 2012, , .		0
93	Sandwiched SiO2@Ni@ZrO2 as a Coke Resistant Nanocatalyst for Carbon Dioxide Reforming with Addition of Methane. , 2019, , .		0
94	Structure-Performance Evolution of Cobalt-Ammonia Activated Carbon Catalyst for Ethylene Oligomerization. Catalysis Letters, 0, , 1.	2.6	0
95			