
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2848801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials, 2005, 26, 6194-6207.	5.7	237
2	Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano, 2018, 12, 7690-7700.	7.3	208
3	Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 2010, 6, 2532-2539.	4.1	141
4	Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 2010, 26, 9875-9884.	1.6	100
5	Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(É›-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation <i>In Vitro</i> . Tissue Engineering - Part A, 2010, 16, 2661-2673.	1.6	95
6	Shuttleâ€Mediated Nanoparticle Delivery to the Blood–Brain Barrier. Small, 2013, 9, 853-862.	5.2	87
7	Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Experimental Cell Research, 2015, 330, 240-247.	1.2	78
8	Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. Journal of Biotechnology, 2015, 193, 3-10.	1.9	75
9	Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. Journal of Nanoparticle Research, 2011, 13, 4295-4309.	0.8	74
10	A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 925-934.	1.7	73
11	Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale, 2014, 6, 10264-10273.	2.8	73
12	Fez1/Lzts1 Absence Impairs Cdk1/Cdc25C Interaction during Mitosis and Predisposes Mice to Cancer Development. Cancer Cell, 2007, 11, 275-289.	7.7	67
13	3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomaterialia, 2018, 75, 200-212.	4.1	63
14	Clickable Functionalization of Liposomes with the gH625 Peptide from <i>Herpes simplex</i> Virus Typeâ€I for Intracellular Drug Delivery. Chemistry - A European Journal, 2011, 17, 12659-12668.	1.7	57
15	Shuttleâ€mediated nanoparticle transport across an in vitro brain endothelium under flow conditions. Biotechnology and Bioengineering, 2017, 114, 1087-1095.	1.7	51
16	Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Acta Biomaterialia, 2009, 5, 1082-1093.	4.1	49
17	Fluorescent <i>salen</i> -type Zn(II) Complexes As Probes for Detecting Hydrogen Sulfide and Its Anion: Bioimaging Applications. Inorganic Chemistry, 2020, 59, 15977-15986.	1.9	49
18	Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	45

#	Article	IF	CITATIONS
19	Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small, 2018, 14, e1800227.	5.2	42
20	Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. Journal of Materials Science: Materials in Medicine, 2007, 18, 245-253.	1.7	39
21	Enhanced Drug Delivery into Cell Cytosol <i>via</i> Glycoprotein H-Derived Peptide Conjugated Nanoemulsions. ACS Nano, 2017, 11, 9802-9813.	7.3	36
22	Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures. Colloids and Surfaces B: Biointerfaces, 2017, 149, 7-15.	2.5	35
23	PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles. Nanomaterials, 2017, 7, 332.	1.9	34
24	Ligand engagement on material surfaces is discriminated by cell mechanosensoring. Biomaterials, 2015, 45, 72-80.	5.7	33
25	Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103885.	1.5	33
26	Toxicological Properties of Nanoparticles of Organic Compounds (NOC) from Flames and Vehicle Exhausts. Environmental Science & Technology, 2009, 43, 2608-2613.	4.6	32
27	3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Acta Biomaterialia, 2017, 57, 47-58.	4.1	32
28	Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 548-557.	2.3	30
29	From square to circular polymeric microchannels by spin coating technology: a low cost platform for endothelial cell culture. Biofabrication, 2016, 8, 025005.	3.7	29
30	Antiangiogenic Effect of Graphene Oxide in Primary Human Endothelial Cells. ACS Applied Materials & Interfaces, 2020, 12, 22507-22518.	4.0	29
31	Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. Nanoscale, 2016, 8, 8798-8809.	2.8	28
32	Tumorâ€activated prodrug (TAP)â€conjugated nanoparticles with cleavable domains for safe doxorubicin delivery. Biotechnology and Bioengineering, 2015, 112, 601-611.	1.7	24
33	RGDechi-hCit: αvβ3 Selective Pro-Apoptotic Peptide as Potential Carrier for Drug Delivery into Melanoma Metastatic Cells. PLoS ONE, 2014, 9, e106441.	1.1	24
34	Sub-100 nm biodegradable nanoparticles:in vitrorelease features and toxicity testing in 2D and 3D cell cultures. Nanotechnology, 2013, 24, 045101.	1.3	23
35	Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. Nanoscale, 2017, 9, 11288-11296.	2.8	23
36	Fluorescent (rhodamine), folate decorated and doxorubicin charged, PEGylated nanoparticles synthesis. Journal of Materials Science: Materials in Medicine, 2012, 23, 1697-1704.	1.7	22

#	Article	IF	CITATIONS
37	Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process. Journal of Biomaterials Applications, 2012, 27, 241-254.	1.2	21
38	Cell recruitment and transfection in gene activated collagen matrix. Biomaterials, 2010, 31, 570-576.	5.7	20
39	gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins. International Journal of Nanomedicine, 2013, 8, 2555.	3.3	20
40	ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. ACS Biomaterials Science and Engineering, 2017, 3, 1586-1594.	2.6	19
41	Engineering of Covalently Immobilized Gradients of RGD Peptides on Hydrogel Scaffolds: Effect on Cell Behaviour. Macromolecular Symposia, 2008, 266, 36-40.	0.4	18
42	Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids. Colloids and Surfaces B: Biointerfaces, 2015, 135, 707-716.	2.5	18
43	Design, Synthesis and Characterization of Novel Co-Polymers Decorated with Peptides for the Selective Nanoparticle Transport across the Cerebral Endothelium. Molecules, 2018, 23, 1655.	1.7	18
44	Design of novel 3D gene activated PEG scaffolds with ordered pore structure. Journal of Materials Science: Materials in Medicine, 2010, 21, 1013-1020.	1.7	16
45	Biostability enhancement of oil core — polysaccharide multilayer shell via photoinitiator free thiol-ene †click' reaction. Colloids and Surfaces B: Biointerfaces, 2016, 142, 281-289.	2.5	16
46	Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities. Advanced Healthcare Materials, 2015, 4, 2688-2698.	3.9	14
47	Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. Nanotechnology, 2015, 26, 415101.	1.3	14
48	Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. Journal of Chemical Theory and Computation, 2021, 17, 4512-4523.	2.3	13
49	Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. Nanomaterials, 2021, 11, 1587.	1.9	13
50	Imidazo-pyridine-based Zinc (II) complexes as fluorescent hydrogen sulfide probes Dalton Transactions, 2021, 50, 17075-17085.	1.6	13
51	Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model. Colloids and Surfaces B: Biointerfaces, 2016, 144, 250-256.	2.5	12
52	Fabrication of a modular hybrid chip to mimic endothelial-lined microvessels in flow conditions. Journal of Micromechanics and Microengineering, 2017, 27, 035014.	1.5	9
53	Gene-activated and cell-migration guiding PEG matrices based on three dimensional patterning of RGD peptides and DNA complexes. Acta Biomaterialia, 2012, 8, 3228-3240.	4.1	8
54	Boosting the therapeutic efficiency of nanovectors: exocytosis engineering. Nanoscale, 2017, 9, 3757-3765.	2.8	8

#	Article	IF	CITATIONS
55	A Method for Evaluating Nanoparticle Transport Through the Blood–Brain Barrier In Vitro. Methods in Molecular Biology, 2014, 1141, 185-199.	0.4	8
56	Confined Gelatin Dehydration as a Viable Route To Go Beyond Micromilling Resolution and Miniaturize Biological Assays. ACS Applied Materials & Interfaces, 2016, 8, 12075-12081.	4.0	7
57	In Vitro Blood–Brain Barrier Models for Nanomedicine: Particle-Specific Effects and Methodological Drawbacks. ACS Applied Bio Materials, 2019, 2, 3279-3289.	2.3	7
58	Paper-Strip-Based Sensors for H2S Detection: A Proof-of-Principle Study. Sensors, 2022, 22, 3173.	2.1	5
59	Drug Delivery: Shuttleâ€Mediated Nanoparticle Delivery to the Blood–Brain Barrier (Small 6/2013). Small, 2013, 9, 806-806.	5.2	2
60	Graphene Biotransformation: Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion (Small 24/2018). Small, 2018, 14, 1870113.	5.2	2
61	Multilayered Nanocarrier Systems: Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities (Adv. Healthcare Mater. 17/2015). Advanced Healthcare Materials, 2015, 4, 2736-2736.	3.9	1
62	Design and optimization of polymer nanoshuttles for nanomedicine. , 2015, , .		1
63	Role of Spatial Distribution of Matricellular Cues in Controlling Cell Functions. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 207-232.	0.5	0