Kutay Icoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2848717/publications.pdf

Version: 2024-02-01

1051969 993246 33 321 10 17 h-index citations g-index papers 33 33 33 416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep learning based semantic segmentation and quantification for MRD biochip images. Biomedical Signal Processing and Control, 2022, 77, 103783.	3.5	1
2	Parameter investigation of topological data analysis for EEG signals. Biomedical Signal Processing and Control, 2021, 63, 102196.	3.5	8
3	Immunomagnetic separation of B type acute lymphoblastic leukemia cells from bone marrow with flow cytometry validation and microfluidic chip measurements. Separation Science and Technology, 2021, 56, 2659-2666.	1.3	5
4	Optical detection of microplastics in water. Environmental Science and Pollution Research, 2021, 28, 63860-63866.	2.7	22
5	Tuning optical properties of self-assembled nanoparticle network with external optical excitation. Journal of Applied Physics, 2021, 129, .	1,1	2
6	Feedback controller designs for an electromagnetic micromanipulator. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2020, 234, 759-772.	0.7	0
7	Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment. Biomedical Microdevices, 2020, 22, 48.	1.4	9
8	Image-analysis based readout method for biochip: Automated quantification of immunomagnetic beads, micropads and patient leukemia cell. Micron, 2020, 133, 102863.	1.1	6
9	Image-Processing Based Signal Readout Method for MRD Biochip. , 2019, , .		O
10	Design, modeling, and control of a horizontal magnetic micromanipulator. Transactions of the Institute of Measurement and Control, 2019, 41, 3190-3198.	1.1	4
11	Capturing B type acute lymphoblastic leukemia cells using two types of antibodies. Biotechnology Progress, 2019, 35, e2737.	1.3	4
12	Automated quantification of immunomagnetic beads and leukemia cells from optical microscope images. Biomedical Signal Processing and Control, 2019, 49, 473-482.	3.5	20
13	Improving Short-Term Memory Performance of Healthy Young Males Using Alpha Band Neurofeedback. NeuroRegulation, 2019, 6, 15-22.	0.7	1
14	Quartzâ€crystal Microbalance Measurements of CD19 Antibody Immobilization on Gold Surface and Capturing B Lymphoblast Cells: Effect of Surface Functionalization. Electroanalysis, 2018, 30, 834-841.	1.5	10
15	A horizontal magnetic tweezer for single molecule micromanipulations. , $2018, , .$		O
16	Use of Topological Data Analysis in Motor Intention Based Brain-Computer Interfaces. , 2018, , .		6
17	Magnetic-particle Based Signal Amplification Method Integrated with Mobile-devices for Low Cost Biosensing. Procedia Technology, 2017, 27, 14-15.	1.1	0
18	Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing. International	3.3	6

#	Article	IF	CITATIONS
19	Detection of Proteins Using Nano Magnetic Particle Accumulation-Based Signal Amplification. Applied Sciences (Switzerland), 2016, 6, 394.	1.3	9
20	Image Processing and Cell Phone Microscopy to Analyze the Immunomagnetic Beads on Micro-Contact Printed Gratings. Applied Sciences (Switzerland), 2016, 6, 279.	1.3	5
21	Micro- and nanodevices integrated with biomolecular probes. Biotechnology Advances, 2015, 33, 1727-1743.	6.0	24
22	Point-of-Care Screening for Sickle Cell Disease By a Mobile Micro-Electrophoresis Platform. Blood, 2015, 126, 3379-3379.	0.6	16
23	On-demand weighing of single dry biological particles over a 5-order-of-magnitude dynamic range. Lab on A Chip, 2014, 14, 4188-4196.	3.1	14
24	Selective Weighing of Individual Microparticles Using a Hybrid Micromanipulator-Nanomechanical Resonator System. IEEE Sensors Journal, 2013, 13, 2857-2862.	2.4	4
25	A Compact Manually Actuated Micromanipulator. Journal of Microelectromechanical Systems, 2012, 21, 7-9.	1.7	13
26	Nanomechanical biosensing with immunomagnetic separation. Applied Physics Letters, 2010, 97, 123701.	1.5	17
27	Diffractometric Detection of Proteins Using Microbead-Based Rolling Circle Amplification. Analytical Chemistry, 2010, 82, 197-202.	3.2	95
28	Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors. Applied Physics Letters, 2008, 93, .	1.5	13
29	High spatial resolution IoT based air PM measurement system. Environmental and Ecological Statistics, 0, , 1.	1.9	2
30	Using Students' Performance to Improve Ontologies for Intelligent E-Learning System. Educational Sciences: Theory and Practice, 0, , .	2.6	4
31	Microfluidic Devices: A New Paradigm in Toxicity Studies. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	1
32	Deep Learning Based Semantic Segmentation and Quantification for MRD Biochip Images. SSRN Electronic Journal, 0, , .	0.4	0
33	Magnetic Separation of Micro Beads and Cells on a Paper-Based Lateral Flow System. SSRN Electronic Journal, 0, , .	0.4	0