Li Xiaoyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2848581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. Journal of Energy Storage, 2019, 21, 510-518.	3.9	271
2	State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. Journal of Power Sources, 2019, 410-411, 106-114.	4.0	255
3	State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy, 2020, 190, 116467.	4.5	237
4	Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. Journal of Power Sources, 2019, 421, 56-67.	4.0	206
5	Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy, 2019, 174, 33-44.	4.5	180
6	State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. Energy, 2020, 203, 117852.	4.5	167
7	A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles. Measurement: Journal of the International Measurement Confederation, 2018, 116, 402-411.	2.5	131
8	Lithium Battery State-of-Health Estimation via Differential Thermal Voltammetry With Gaussian Process Regression. IEEE Transactions on Transportation Electrification, 2021, 7, 16-25.	5.3	85
9	Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. Journal of Power Sources, 2020, 467, 228358.	4.0	79
10	Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method. Journal of Energy Storage, 2020, 27, 101121.	3.9	73
11	Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods. Energies, 2016, 9, 184.	1.6	64
12	State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter. Energy, 2021, 220, 119767.	4.5	55
13	State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy. Energy, 2021, 214, 118858.	4.5	51
14	A Crossed DD Geometry and Its Double-Coil Excitation Method for Electric Vehicle Dynamic Wireless Charging Systems. IEEE Access, 2018, 6, 45120-45128.	2.6	50
15	Case Study of an Electric Vehicle Battery Thermal Runaway and Online Internal Short-Circuit Detection. IEEE Transactions on Power Electronics, 2021, 36, 2452-2455.	5.4	49
16	Lithium battery state-of-health estimation and remaining useful lifetime prediction based on non-parametric aging model and particle filter algorithm. ETransportation, 2022, 11, 100156.	6.8	49
17	An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles. Energies, 2017, 10, 691.	1.6	48
18	A partial charging curve-based data-fusion-model method for capacity estimation of Li-Ion battery. Journal of Power Sources, 2021, 483, 229131.	4.0	44

LI ΧΙΑΟΥ

#	Article	IF	CITATIONS
19	A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles. Energies, 2016, 9, 710.	1.6	34
20	Driving cycles construction for electric vehicles considering road environment: A case study in Beijing. Applied Energy, 2019, 253, 113514.	5.1	33
21	Driving Cycle Construction for Electric Vehicles Based on Markov Chain and Monte Carlo Method: A Case Study in Beijing. Energy Procedia, 2019, 158, 2494-2499.	1.8	25
22	A data-fusion framework for lithium battery health condition Estimation Based on differential thermal voltammetry. Energy, 2022, 239, 122206.	4.5	19
23	Multi-state joint estimation for a lithium-ion hybrid capacitor over a wide temperature range. Journal of Power Sources, 2020, 479, 228677.	4.0	17
24	Energy consumption analysis of a parallel PHEV with different configurations based on a typical driving cycle. Energy Reports, 2021, 7, 254-265.	2.5	15
25	Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures. Energy, 2021, 223, 120024.	4.5	14
26	LiFePO4 battery charging strategy design considering temperature rise minimization. Journal of Renewable and Sustainable Energy, 2017, 9, .	0.8	11
27	Battery Pack Grouping and Capacity Improvement for Electric Vehicles Based on a Genetic Algorithm. Energies, 2017, 10, 439.	1.6	10
28	Modeling and comparative analysis of a lithiumâ€ion hybrid capacitor under different temperature conditions. International Journal of Energy Research, 2020, 44, 3801-3820.	2.2	8
29	Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis. Applied Energy, 2020, 262, 114518.	5.1	7
30	Lumped-parameter temperature evolution model for cylindrical Li-ion batteries considering reversible heat and propagation delay. Measurement: Journal of the International Measurement Confederation, 2021, 173, 108567.	2.5	7
31	A flexible method for state-of-health estimation of lithium battery energy storage system. Energy Reports, 2021, 7, 6375-6383.	2.5	6
32	Battery Pack State of Health Prediction Based on the Electric Vehicle Management Platform Data. World Electric Vehicle Journal, 2021, 12, 204.	1.6	4
33	Amphiphilic Block Copolymer Micelles for Gene Delivery. Chemical Research in Chinese Universities, 2022, 38, 1368-1379.	1.3	3
34	An optimal charging algorithm for lithium-ion batteries considering temperature rise minimization. , 2017, , .		1
35	A Multi-Particle Physics-Based Model of a Lithium-Ion Battery for Fast-Charging Control Application. World Electric Vehicle Journal, 2021, 12, 196.	1.6	1
36	State of Charge Estimation for Under-Sampled Battery Data Based on LSTM with Empirical Mode Decomposition and a Compensation Strategy. , 2021, , .		0