
Carolina Estarellas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2847424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel indolic AMPK modulators induce vasodilatation through activation of the AMPK–eNOS–NO pathway. Scientific Reports, 2022, 12, 4225.	3.3	2
2	Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant. Scientific Reports, 2021, 11, 13705.	3.3	45
3	Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation. ACS Macro Letters, 2021, 10, 984-989.	4.8	8
4	Structural basis of the selective activation of enzyme isoforms: Allosteric response to activators of β1- and β2-containing AMPK complexes. Computational and Structural Biotechnology Journal, 2021, 19, 3394-3406.	4.1	10
5	Elucidating the Activation Mechanism of AMPK by Direct Pan-Activator PF-739. Frontiers in Molecular Biosciences, 2021, 8, 760026.	3.5	1
6	Combining Machine Learning and Enhanced Sampling Techniques for Efficient and Accurate Calculation of Absolute Binding Free Energies. Journal of Chemical Theory and Computation, 2020, 16, 4641-4654.	5.3	26
7	Modulating Ligand Dissociation through Methyl Isomerism in Accessory Sites: Binding of Retinol to Cellular Carriers. Journal of Physical Chemistry Letters, 2019, 10, 7333-7339.	4.6	5
8	Understanding the Mechanism of Direct Activation of AMP-Kinase: Toward a Fine Allosteric Tuning of the Kinase Activity. Journal of Chemical Information and Modeling, 2019, 59, 2859-2870.	5.4	10
9	Generation and Reactions of an Octacyclic Hindered Pyramidalized Alkene. Journal of Organic Chemistry, 2018, 83, 5420-5430.	3.2	1
10	Multiple Multicomponent Reactions: Unexplored Substrates, Selective Processes, and Versatile Chemotypes in Biomedicine. Chemistry - A European Journal, 2018, 24, 14513-14521.	3.3	31
11	Origin of the Baseâ€Dependent Facial Selectivity in Annulation Reactions of Nazarovâ€Type Reagents with Unsaturated Indolo[2,3â€ <i>a</i>]quinolizidine Lactams. European Journal of Organic Chemistry, 2017, 2017, 3969-3979.	2.4	5
12	Insertion of Isocyanides into Nâ ^{~'} Si Bonds: Multicomponent Reactions with Azines Leading to Potent Antiparasitic Compounds. Angewandte Chemie - International Edition, 2016, 55, 8994-8998.	13.8	28
13	Insertion of Isocyanides into Nâ^'Si Bonds: Multicomponent Reactions with Azines Leading to Potent Antiparasitic Compounds. Angewandte Chemie, 2016, 128, 9140-9144.	2.0	7
14	Stereocontrolled Annulations of Indolo[2,3â€ <i>a</i>]quinolizidineâ€Derived Lactams with a Silylated Nazarov Reagent: Access to Allo and Epiallo Yohimbineâ€Type Derivatives. Chemistry - A European Journal, 2015, 21, 13382-13389.	3.3	7
15	Short Access to Belt Compounds with Spatially Close CC Bonds and Their Transannular Reactions. Chemistry - A European Journal, 2015, 21, 14036-14046.	3.3	2
16	Easy access to (2-imidazolin-4-yl)phosphonates by a microwave assisted multicomponent reaction. Tetrahedron, 2015, 71, 2872-2881.	1.9	19
17	Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1072-1090.	2.4	20
18	Anion–π Interactions Involving [MX _{<i>n</i>}] ^{<i>m</i>â^'} Anions: A Comprehensive Theoretical Study. ChemPhysChem, 2013, 14, 145-154.	2.1	11

#	Article	IF	CITATIONS
19	Quantification of Nitrateâ~ïi€ Interactions and Selective Transport of Nitrate Using Calix[4]pyrroles with Two Aromatic Walls. Journal of the American Chemical Society, 2013, 135, 8324-8330.	13.7	147
20	Effect of a methyl group on the spontaneous resolution of a square-pyramidal coordination compound: crystal packing and conglomerate formation. CrystEngComm, 2012, 14, 5854.	2.6	13
21	Synthesis, X-ray characterization and computational Studies of N-imidazolyl and N-pyrazolyl pyrimidine derivatives. Tetrahedron, 2012, 68, 2374-2382.	1.9	8
22	RNAs' uracil quartet model with a non-essential metal ion. Chemical Communications, 2011, 47, 4646.	4.1	16
23	Design of a dual sensing highly selective cyanide chemodosimeter based on pyridinium ring chemistry. New Journal of Chemistry, 2011, 35, 57-60.	2.8	34
24	Unexpected Nonadditivity Effects in Anionâ^'Ï€ Complexes. Journal of Physical Chemistry A, 2011, 115, 7849-7857.	2.5	23
25	Kinetics and mechanism of the oxidation of hydroxylamine by a {Mn3O4}4+ core in aqueous acidic media. Dalton Transactions, 2011, 40, 9571.	3.3	2
26	Supramolecular Self-Assembly of M-IDA Complexes Involving Lone-Pair··Â-Ï€ Interactions: Crystal Structures, Hirshfeld Surface Analysis, and DFT Calculations [H ₂ IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Crystal Growth and Design, 2011, 11, 3250-3265.	3.0	304
27	On the directionality of anion–Ĩ€ interactions. Physical Chemistry Chemical Physics, 2011, 13, 5696.	2.8	78
28	Supramolecular assemblies involving anion‑π and lone pair‑π interactions: experimental observation and theoretical analysis. CrystEngComm, 2011, 13, 4519.	2.6	86
29	Radical cation (CË™+–Ĩ€) and radical anion (AË™â~–Ĩ€) interactions with aromatic rings: energetic, orbitalic and spin density considerations. Physical Chemistry Chemical Physics, 2011, 13, 16698.	2.8	13
30	Theoretical ab initio study of substituted benzene trimer: Interplay between hydrogen bonding and ï€â€"ï€ interactions. Computational and Theoretical Chemistry, 2011, 975, 106-110.	2.5	7
31	A Highly Selective Fluorescence Turn-on Probe for Zn2+ Based on New Diaryloxadiazole Chelate. Chemistry Letters, 2011, 40, 1163-1164.	1.3	2
32	Anionπ Interactions in Flavoproteins. Chemistry - an Asian Journal, 2011, 6, 2316-2318.	3.3	52
33	Can lone pair-Ï€ and cation-Ï€ interactions coexist? A theoretical study. Open Chemistry, 2011, 9, 25-34.	1.9	14
34	A methodological analysis for the assessment of non-covalent π interactions. Chemical Physics Letters, 2011, 508, 144-148.	2.6	23
35	Trinuclear and tetranuclear adduct formation between sodium perchlorate and copper(II) complexes of salicylaldimine type ligands: Structural characterization and theoretical investigation. Inorganica Chimica Acta, 2011, 366, 219-226.	2.4	51
36	Synthesis and Crystal Structures of μâ€Oxido―and μâ€Hydroxidoâ€Bridged Dinuclear Iron(III) Complexes wit an N ₂ O Donor Ligand – A Theoretical Study on the Influence of Weak Forces on the Fe–O–Fe Bridging Angle. European Journal of Inorganic Chemistry, 2011, 2011, 2558-2566.	h 2.0	24

CAROLINA ESTARELLAS

#	Article	IF	CITATIONS
37	Theoretical Study on Cooperativity Effects between Anion–π and Halogenâ€Bonding Interactions. ChemPhysChem, 2011, 12, 2742-2750.	2.1	79
38	Relevant Anion–l̃€ Interactions in Biological Systems: The Case of Urate Oxidase. Angewandte Chemie - International Edition, 2011, 50, 415-418.	13.8	164
39	Cooperativity in multiple unusual weak bonds. Theoretical Chemistry Accounts, 2010, 126, 1-14.	1.4	254
40	Cooperativity effects between non-covalent interactions: Are they important for Z-DNA stability?. Chemical Physics Letters, 2010, 485, 221-225.	2.6	13
41	New Chlorido(dimethyl sulfoxide)iridium(III) Complexes with N6-Substituted Adenines - Kinetic N(7) versus Thermodynamic N(9) Coordinated Adenine Isomers. European Journal of Inorganic Chemistry, 2010, 2010, 5617-5628.	2.0	10
42	A Combined Experimental and Theoretical Study of Anion–π Interactions in <i>N</i> ⁶ ― and <i>N</i> ⁹ â€Decyladenine Salts. European Journal of Organic Chemistry, 2010, 2010, 5171-5180.	2.4	19
43	Hydrogen-bond assisted stabilization of the less favored conformation of a tridentate Schiff base ligand in dinuclear nickel(II) complex: An experimental and theoretical study. Inorganica Chimica Acta, 2010, 363, 3904-3913.	2.4	23
44	Erroneous behaviour of the widely used MP2(full)/aug-cc-pVXZ (X=D,T) level of theory for evaluating the BSSE in ion–΀ complexes. Chemical Physics Letters, 2010, 489, 254-258.	2.6	20
45	Experimental and theoretical study of uracil derivatives: the crucial role of weak fluorine–fluorine noncovalent interactions. CrystEngComm, 2010, 12, 3758.	2.6	60
46	Supramolecular Assembly of Mg(II) Complexes Directed by Associative Lone Pairâ^'Ï€/Ï€â^'Ï€/Ï€â^'Anionâ^'Ï€/I€â^'Lone Pair Interactions. Journal of Physical Chemistry B, 2010, 114, 4998-5009.	2.6	78
47	Lone pair–π vs π–π interactions in 5-fluoro-1-hexyluracil and 1-hexyluracil: a combined crystallographic and computational study. CrystEngComm, 2010, 12, 362-365.	2.6	39
48	Very Longâ€Range Effects: Cooperativity between Anion–π and Hydrogenâ€Bonding Interactions. ChemPhysChem, 2009, 10, 2256-2264.	2.1	80
49	Theoretical ab initio study of the interplay between hydrogen bonding, cation–π and π–π interactions. Theoretical Chemistry Accounts, 2009, 122, 325-332.	1.4	31
50	Theoretical and crystallographic study of edge-to-face aromatic interactions between pyridine moieties and benzene. Chemical Physics Letters, 2009, 468, 280-285.	2.6	21
51	Interplay between cation–π and hydrogen bonding interactions: Are non-additivity effects additive?. Chemical Physics Letters, 2009, 479, 316-320.	2.6	42
52	2-Aminopyrimidine Derivatives Exhibiting Anion-Ï€ Interactions: A Combined Crystallographic and Theoretical Study. Crystal Growth and Design, 2009, 9, 2363-2376.	3.0	39
53	Simultaneous Interaction of Tetrafluoroethene with Anions and Hydrogen-Bond Donors: A Cooperativity Study. Journal of Chemical Theory and Computation, 2009, 5, 1186-1194.	5.3	52
54	Energetic vs Synergetic Stability: A Theoretical Study. Journal of Physical Chemistry A, 2009, 113, 3266-3273.	2.5	52

#	Article	IF	CITATIONS
55	Anionâ~Ï€ Interactions in Four-Membered Rings. Organic Letters, 2009, 11, 1987-1990.	4.6	38
56	MP2 Study of the Dual σ/Ï€â^'Anion-Binding Affinity of Fluorinated Phthallic Acid Anhydrides. Journal of Physical Chemistry A, 2008, 112, 1622-1626.	2.5	12
57	Theoretical and Crystallographic Study of the Dual σ/π Anion Binding Affinity of Quinolizinylium Cation. Journal of Chemical Theory and Computation, 2008, 4, 1981-1989.	5.3	21