Ute Resch-Genger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2847045/publications.pdf

Version: 2024-02-01

318 papers 17,228 citations

20759 60 h-index 120 g-index

337 all docs $\begin{array}{c} 337 \\ \text{docs citations} \end{array}$

times ranked

337

19269 citing authors

#	Article	IF	CITATIONS
1	Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008, 5, 763-775.	9.0	3,331
2	Relative and absolute determination of fluorescence quantum yields of transparent samples. Nature Protocols, 2013, 8, 1535-1550.	5.5	863
3	A Selective and Sensitive Fluoroionophore for HgII, AgI, and CuII with Virtually Decoupled Fluorophore and Receptor Units. Journal of the American Chemical Society, 2000, 122, 968-969.	6.6	669
4	Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Analytical Chemistry, 2009, 81, 6285-6294.	3.2	556
5	Rigidization, preorientation and electronic decouplingâ€"the â€~magic triangle' for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 2002, 31, 116-127.	18.7	470
6	Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation:Â A New Design Concept for Highly Sensitive Fluorescent Probes. Journal of Physical Chemistry A, 1998, 102, 10211-10220.	1.1	346
7	NaYF ₄ :Yb,Er/NaYF ₄ Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angewandte Chemie - International Edition, 2018, 57, 8765-8769.	7.2	298
8	Quenching of the upconversion luminescence of NaYF ₄ :Yb ³⁺ ,Er ³⁺ and NaYF ₄ :Yb ³⁺ ,Tm ³⁺ nanophosphors by water: the role of the sensitizer Yb ³⁺ in non-radiative relaxation. Nanoscale, 2015, 7, 11746-11757.	2.8	267
9	Redox Switchable Fluorescent Probe Selective for Either Hg(II) or Cd(II) and Zn(II). Journal of the American Chemical Society, 1999, 121, 5073-5074.	6.6	225
10	Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7, 1403-1410.	2.8	210
11	Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 4922-4928.	6.6	185
12	[Cr(ddpd) ₂] ³⁺ : A Molecular, Waterâ€Soluble, Highly NIRâ€Emissive Ruby Analogue. Angewandte Chemie - International Edition, 2015, 54, 11572-11576.	7.2	181
13	Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields. Analytical Chemistry, 2011, 83, 3431-3439.	3.2	169
14	Particle-Size-Dependent FÃ \P rster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Analytical Chemistry, 2017, 89, 4868-4874.	3.2	161
15	Chalcone-Analogue Dyes Emitting in the Near-Infrared (NIR):  Influence of Donorâ^'Acceptor Substitution and Cation Complexation on Their Spectroscopic Properties and X-ray Structure. Journal of Physical Chemistry A, 2000, 104, 3087-3109.	1.1	149
16	Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. Journal of Controlled Release, 2012, 163, 75-81.	4.8	133
17	Power-dependent upconversion quantum yield of NaYF ₄ :Yb ³⁺ ,Er ³⁺ nano- and micrometer-sized particles – measurements and simulations. Nanoscale, 2017, 9, 10051-10058.	2.8	132
18	Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension—A Method Comparison. Journal of Fluorescence, 2018, 28, 465-476.	1.3	124

#	Article	IF	CITATIONS
19	Targeted Luminescent Near-Infrared Polymer-Nanoprobes for In Vivo Imaging of Tumor Hypoxia. Analytical Chemistry, 2011, 83, 9039-9046.	3.2	122
20	Cu(II)- and Hg(II)-Induced Modulation of the Fluorescence Behavior of a Redox-Active Sensor Molecule. Inorganic Chemistry, 2001, 40, 641-644.	1.9	119
21	Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale, 2017, 9, 4283-4294.	2.8	117
22	Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical) Tj ETQq0 0 0	rgBT /Ovei	lock 10 Tf 50
23	Cation-triggered †switching on' of the red/near infra-red (NIR) fluorescence of rigid fluorophore†spacer†receptor ionophores. Chemical Communications, 2000, , 2103-2104.	2.2	112
24	Traceability in Fluorometry: Part II. Spectral Fluorescence Standards. Journal of Fluorescence, 2005, 15, 315-336.	1.3	102
25	Highly Fluorescent Open-Shell NIR Dyes: The Time-Dependence of Back Electron Transfer in Triarylamine-Perchlorotriphenylmethyl Radicals. Journal of Physical Chemistry C, 2009, 113, 20958-20966.	1.5	100
26	Encapsulation of Hydrophobic Dyes in Polystyrene Micro- and Nanoparticles via Swelling Procedures. Journal of Fluorescence, 2011, 21, 937-944.	1.3	99
27	Quantum Yield Switching of Fluorescence by Selectively Bridging Single and Double Bonds in Chalcones:Â Involvement of Two Different Types of Conical Intersections. Journal of Physical Chemistry A, 1999, 103, 9626-9635.	1.1	95
28	Deuterated Molecular Ruby with Record Luminescence Quantum Yield. Angewandte Chemie - International Edition, 2018, 57, 1112-1116.	7.2	94
29	Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale, 2019, 11, 2056-2064.	2.8	94
30	How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards. Journal of Fluorescence, 2005, 15, 337-362.	1.3	92
31	Substituted 1,5-Diphenyl-3-benzothiazol-2-yl-î"2-pyrazolines:Â Synthesis, X-ray Structure, Photophysics, and Cation Complexation Properties. Journal of Physical Chemistry A, 2000, 104, 6171-6188.	1.1	88
32	Fluorescent anion receptors with iminoylthiourea binding sitesâ€"selective hydrogen bond mediated recognition of CO 3 2â°', HCO 3 â°' and HPO 4 2â°'. Tetrahedron Letters, 2001, 42, 2805-2808.	0.7	87
33	Scope and Limitations of Surface Functional Group Quantification Methods: Exploratory Study with Poly(acrylic acid)-Grafted Micro- and Nanoparticles. Journal of the American Chemical Society, 2012, 134, 8268-8276.	6.6	87
34	Luminescence and Lightâ€Driven Energy and Electron Transfer from an Exceptionally Longâ€Lived Excited State of a Nonâ€Innocent Chromium(III) Complex. Angewandte Chemie - International Edition, 2019, 58, 18075-18085.	7.2	87
35	Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared. Analytical Chemistry, 2012, 84, 1345-1352.	3.2	86
36	An in vitro characterization study of new near infrared dyes for molecular imaging. European Journal of Medicinal Chemistry, 2009, 44, 3496-3503.	2.6	84

#	Article	IF	Citations
37	Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Research, 2018, 11, 6360-6374.	5.8	84
38	Exploring the dual functionality of an ytterbium complex for luminescence thermometry and slow magnetic relaxation. Chemical Science, 2019, 10, 6799-6808.	3.7	83
39	Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction. Review of Scientific Instruments, 2011, 82, 063108.	0.6	81
40	Photoâ€Chromium: Sensitizer for Visibleâ€Lightâ€Induced Oxidative Câ^'H Bond Functionalizationâ€"Electron or Energy Transfer?. ChemPhotoChem, 2017, 1, 344-349.	1.5	78
41	Yb,Nd,Er-doped upconversion nanoparticles: 980 nm <i>versus</i> 808 nm excitation. Nanoscale, 2019, 11, 13440-13449.	2.8	78
42	Design of an efficient charge-transfer processing molecular system containing a weak electron donor: spectroscopic and redox properties and cation-induced fluorescence enhancement. Chemical Physics Letters, 2000, 329, 363-369.	1.2	76
43	<i>Stability and Fluorescence Quantum Yield of CdSe–ZnS Quantum Dots—Influence of the Thickness of the ZnS Shell</i> . Annals of the New York Academy of Sciences, 2008, 1130, 235-241.	1.8	76
44	Suitable Labels for Molecular Imaging – Influence of Dye Structure and Hydrophilicity on the Spectroscopic Properties of IgG Conjugates. Bioconjugate Chemistry, 2011, 22, 1298-1308.	1.8	76
45	On the decay time of upconversion luminescence. Nanoscale, 2019, 11, 4959-4969.	2.8	76
46	Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd _{1â^x} Hg _x Te and PbS quantum dots – method- and material-inherent challenges. Nanoscale, 2015, 7, 133-143.	2.8	74
47	Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies. Analytical and Bioanalytical Chemistry, 2017, 409, 5855-5874.	1.9	73
48	New Life of Ancient Pigments: Application in High-Performance Optical Sensing Materials. Analytical Chemistry, 2013, 85, 9371-9377.	3.2	72
49	Thermoâ€Chromium: A Contactless Optical Molecular Thermometer. Chemistry - A European Journal, 2017, 23, 12131-12135.	1.7	72
50	Nucleic acid detection based on the use of microbeads: a review. Mikrochimica Acta, 2014, 181, 1151-1168.	2.5	71
51	Fluorescence and UV/Vis spectroscopic behaviour of novel biindolizines. Dyes and Pigments, 2000, 46, 23-27.	2.0	70
52	Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Analytical and Bioanalytical Chemistry, 2015, 407, 59-78.	1.9	70
53	Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions. Applied Spectroscopy, 2010, 64, 733-741.	1.2	68
54	Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Analytical and Bioanalytical Chemistry, 2017, 409, 5875-5890.	1.9	68

#	Article	IF	Citations
55	Photoluminescence Quantum Yield and Matrix-Induced Luminescence Enhancement of Colloidal Quantum Dots Embedded in Ionic Crystals. Chemistry of Materials, 2014, 26, 3231-3237.	3.2	67
56	Simple strategies towards bright polymer particles via one-step staining procedures. Dyes and Pigments, 2012, 94, 247-257.	2.0	66
57	Absolute upconversion quantum yields of blue-emitting LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 22556-22562.	1.3	66
58	Strongly Red-Emissive Molecular Ruby [Cr(bpmp) ₂] ³⁺ Surpasses [Ru(bpy) ₃] ²⁺ . Journal of the American Chemical Society, 2021, 143, 11843-11855.	6.6	66
59	Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nature Methods, 2022, 19, 353-358.	9.0	65
60	Industrially scalable and cost-effective Mn ²⁺ doped Zn _x Cd _{1â^x} S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy and Environmental Science, 2016, 9, 1083-1094.	15.6	63
61	Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 2020, 124, 8894-8904.	1.5	63
62	2,2â€~-Bipyridyl-3,3â€~-diol Incorporated into AlPO4-5 Crystals and Its Spectroscopic Properties as Related to Aqueous Liquid Media. Journal of Physical Chemistry B, 2002, 106, 9744-9752.	1.2	62
63	High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters. ACS Nano, 2020, 14, 4973-4981.	7.3	62
64	Nile-Red–Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir, 2013, 29, 11489-11497.	1.6	60
65	Near-Infrared-Emitting Nanoparticles for Lifetime-Based Multiplexed Analysis and Imaging of Living Cells. ACS Nano, 2013, 7, 6674-6684.	7.3	60
66	Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast <i>In Vivo</i> NIR-II Imaging. Bioconjugate Chemistry, 2020, 31, 1088-1092.	1.8	60
67	High-Quality ZnS Shells for CdSe Nanoparticles:  Rapid Microwave Synthesis. Langmuir, 2007, 23, 7751-7759.	1.6	59
68	Upconversion properties of SrF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2020, 8, 4093-4101.	2.7	58
69	Shaping Luminescent Properties of Yb ³⁺ and Ho ³⁺ Coâ€Doped Upconverting Core–Shell βâ€NaYF ₄ Nanoparticles by Dopant Distribution and Spacing. Small, 2017, 13, 1701635.	5.2	57
70	The Calibration Kit Spectral Fluorescence Standards—A Simple and Certified Tool for the Standardization of the Spectral Characteristics of Fluorescence Instruments. Journal of Fluorescence, 2006, 16, 581-587.	1.3	56
71	Optically Detected Degradation of NaYF ₄ :Yb,Tm-Based Upconversion Nanoparticles in Phosphate Buffered Saline Solution. Langmuir, 2017, 33, 553-560.	1.6	55
72	Simple Self-Referenced Luminescent pH Sensors Based on Upconversion Nanocrystals and pH-Sensitive Fluorescent BODIPY Dyes. Analytical Chemistry, 2019, 91, 7756-7764.	3.2	55

#	Article	IF	Citations
73	Fluorescence standards: Classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report). Pure and Applied Chemistry, 2010, 82, 2315-2335.	0.9	53
74	Aggregation Phenomena of Host and Guest upon the Loading of Dendritic Core-Multishell Nanoparticles with Solvatochromic Dyes. Macromolecules, 2012, 45, 9452-9459.	2.2	53
75	Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, 123, 2632-2641.	1.5	53
76	Fluorescence Lifetime Multiplexing with Nanocrystals and Organic Labels. Analytical Chemistry, 2009, 81, 7807-7813.	3.2	52
77	Photoinduced switching of nanocomposites consisting of azobenzene and molecular sieves: investigation of the switching states. Microporous and Mesoporous Materials, 2000, 41, 99-106.	2.2	50
78	Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials, 2013, 34, 160-170.	5.7	50
79	Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles. Analytical Chemistry, 2011, 83, 4970-4974.	3.2	49
80	Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength. Analytical Chemistry, 2019, 91, 2337-2344.	3.2	49
81	Nearâ€IR to Nearâ€IR Upconversion Luminescence in Molecular Chromium Ytterbium Salts. Angewandte Chemie - International Edition, 2020, 59, 18804-18808.	7.2	49
82	Syntheses and photophysical properties of a series of cation-sensitive polymethine and styryl dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 193-208.	2.0	48
83	Biomembrane Interactions of Functionalized Cryptophaneâ€A: Combined Fluorescence and ¹²⁹ Xe NMR Studies of a Bimodal Contrast Agent. Chemistry - A European Journal, 2013, 19, 3110-3118.	1.7	47
84	Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe ₃ O ₄ Nanoparticles and AIS/ZnS Quantum Dots. Analytical Chemistry, 2019, 91, 12661-12669.	3.2	46
85	High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters. Nanoscale, 2019, 11, 12092-12096.	2.8	44
86	QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy. Nature Methods, 2021, 18, 1423-1426.	9.0	44
87	Traceability in Fluorometryâ€"Part I: Physical Standards. Journal of Fluorescence, 2005, 15, 301-313.	1.3	43
88	Tuning the Surface of Nanoparticles: Impact of Poly(2â€ethylâ€2â€oxazoline) on Protein Adsorption in Serum and Cellular Uptake. Macromolecular Bioscience, 2016, 16, 1287-1300.	2.1	43
89	Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Research, 2019, 12, 1595-1603.	5.8	43
90	Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(<scp>ii</scp>) and Pd(<scp>ii</scp>) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters. Chemical Science, 2021, 12, 3270-3281.	3.7	43

#	Article	IF	Citations
91	Novel Fluorophores as Building Blocks for Optical Probes for In Vivo Near Infrared Fluorescence (NIRF) Imaging. Journal of Fluorescence, 2010, 20, 681-693.	1.3	42
92	Characterization of photoluminescence measuring systems (IUPAC Technical Report). Pure and Applied Chemistry, 2012, 84, 1815-1835.	0.9	42
93	Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios. Physical Chemistry Chemical Physics, 2017, 19, 12509-12516.	1.3	42
94	In Vivo Near-infrared Fluorescence Imaging of Carcinoembryonic Antigen–expressing Tumor Cells in Mice. Radiology, 2008, 247, 779-787.	3.6	41
95	A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale, 2018, 10, 250-259.	2.8	41
96	Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations. Nano Research, 2019, 12, 1871-1879.	5.8	41
97	Surface Modifications for Photon-Upconversion-Based Energy-Transfer Nanoprobes. Langmuir, 2019, 35, 5093-5113.	1.6	41
98	pH-Activatable Singlet Oxygen-Generating Boron-dipyrromethenes (BODIPYs) for Photodynamic Therapy and Bioimaging. Journal of Medicinal Chemistry, 2020, 63, 1699-1708.	2.9	41
99	Unusually high cation-induced fluorescence enhancement of a structurally simple intrinsic fluoroionophore with a donor–acceptor–donor constitution. Chemical Communications, 2000, , 407-408.	2.2	40
100	Recommendations for Fluorescence Instrument Qualification: The New ASTM Standard Guide. Analytical Chemistry, 2010, 82, 2129-2133.	3.2	40
101	Efficient Tripletâ€Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
102	Global analysis of time-resolved emission – a powerful tool for the analytical discrimination of chemically similar ZnII and CdII complexes. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118, 143-149.	2.0	39
103	One-pot aqueous synthesis of high quality near infrared emitting Cd1â^'xHgxTe nanocrystals. Journal of Materials Chemistry, 2009, 19, 9147.	6.7	39
104	Surface Analytical Study of Poly(acrylic acid)-Grafted Microparticles (Beads): Characterization, Chemical Derivatization, and Quantification of Surface Carboxyl Groups. Journal of Physical Chemistry C, 2014, 118, 20393-20404.	1.5	39
105	Quantification of PEG-Maleimide Ligands and Coupling Efficiencies on Nanoparticles with Ellman's Reagent. Analytical Chemistry, 2015, 87, 9376-9383.	3.2	39
106	Digital Imaging of Lithographic Materials by Radical Photopolymerization and Photonic Baking with NIR Diode Lasers. Chemical Engineering and Technology, 2016, 39, 13-25.	0.9	39
107	A Strongly Luminescent Chromium(III) Complex Acid. Chemistry - A European Journal, 2018, 24, 12555-12563.	1.7	39
108	Solidâ€State Emissive Aroylâ€ <i>S</i> , <i>N</i> â€Ketene Acetals with Tunable Aggregationâ€Induced Emission Characteristics. Angewandte Chemie - International Edition, 2020, 59, 10037-10041.	7.2	39

#	Article	IF	CITATIONS
109	Quantification of surface functional groups on polymer microspheres by supramolecular host–guest interactions. Chemical Communications, 2011, 47, 7842.	2.2	38
110	Correlations between complex stability and charge distribution in the ground state for Call and Nal complexes of charge transfer chromo- and fluoroionophores. Chemical Physics Letters, 2000, 320, 87-94.	1.2	36
111	Ellman's and Aldrithiol Assay as Versatile and Complementary Tools for the Quantification of Thiol Groups and Ligands on Nanomaterials. Analytical Chemistry, 2016, 88, 8624-8631.	3.2	36
112	Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Research, 2020, 13, 2438-2450.	5.8	36
113	Controlled Modulation of Serum Protein Binding and Biodistribution of Asymmetric Cyanine Dyes by Variation of the Number of Sulfonate Groups. Molecular Imaging, 2011, 10, 7290.2011.00005.	0.7	34
114	Crystallization and Aggregation-Induced Emission in a Series of Pyrrolidinylvinylquinoxaline Derivatives. Journal of Physical Chemistry C, 2018, 122, 11119-11127.	1.5	34
115	Monitoring of Amino Functionalities on Plasma-Chemically Modified Polypropylene Supports with a Chromogenic and Fluorogenic Pyrylium Reporter. Langmuir, 2007, 23, 8411-8416.	1.6	33
116	New Fluorescent Labels with Tunable Hydrophilicity for the Rational Design of Bright Optical Probes for Molecular Imaging. Bioconjugate Chemistry, 2013, 24, 1174-1185.	1.8	33
117	Evolution of Size and Optical Properties of Upconverting Nanoparticles during High-Temperature Synthesis. Journal of Physical Chemistry C, 2018, 122, 28958-28967.	1.5	33
118	QUAREPâ€LiMi: A communityâ€driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy. Journal of Microscopy, 2021, 284, 56-73.	0.8	33
119	Spectroscopic Characterization of Coumarin-Stained Beads: Quantification of the Number of Fluorophores Per Particle with Solid-State ¹⁹ F-NMR and Measurement of Absolute Fluorescence Quantum Yields. Analytical Chemistry, 2012, 84, 3654-3661.	3.2	32
120	Four- and Five-Component Syntheses and Photophysical Properties of Emission Solvatochromic 3-Aminovinylquinoxalines. Journal of Organic Chemistry, 2017, 82, 567-578.	1.7	32
121	DNA Origami-Based Förster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23295-23302.	4.0	32
122	Triplet–Triplet Annihilation Upconversion in a MOF with Acceptorâ€Filled Channels. Chemistry - A European Journal, 2020, 26, 1003-1007.	1.7	32
123	Bifunctional Charge Transfer Operated Fluorescent Probes with Acceptor and Donor Receptors. 2. Bifunctional Cation Coordination Behavior of Biphenyl-Type Sensor Molecules Incorporating 2,2â€~:6â€~,2â€~Ââ€~-Terpyridine Acceptors. Journal of Physical Chemistry A, 2006, 110, 10972-10984.	1.1	31
124	En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy. Analyst, The, 2015, 140, 1804-1808.	1.7	31
125	Bifunctional Charge Transfer Operated Fluorescent Probes with Acceptor and Donor Receptors. 1. Biphenyl-Type Sensor Molecules with Protonation-Induced Anti-Energy Gap Rule Behavior. Journal of Physical Chemistry A, 2006, 110, 10956-10971.	1.1	30
126	Fluorescence Spectroscopic Studies on Plasma-Chemically Modified Polymer Surfaces with Fluorophore-Labeled Functionalities. Journal of Fluorescence, 2006, 16, 441-448.	1.3	30

#	Article	IF	CITATIONS
127	Fluorescent Nanoclays: Covalent Functionalization with Amine Reactive Dyes from Different Fluorophore Classes and Surface Group Quantification. Journal of Physical Chemistry C, 2015, 119, 12978-12987.	1.5	30
128	Effect of fluorescent staining on size measurements of polymeric nanoparticles using DLS and SAXS. Analytical Methods, 2015, 7, 9785-9790.	1.3	30
129	Tailoring of Polymer Surfaces with Monotype Functional Groups of Variable Density Using Chemical and Plasma Chemical Processes. , 0, , 62-71.		29
130	An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA. Clinical Chemistry and Laboratory Medicine, 2008, 46, 1033-45.	1.4	29
131	Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Transactions, 2013, 42, 12733.	1.6	29
132	Strong Emission Enhancement in pHâ€Responsive 2:2 Cucurbit[8]uril Complexes. Chemistry - A European Journal, 2019, 25, 3257-3261.	1.7	29
133	Broad range ON/OFF pH sensors based on pKa tunable fluorescent BODIPYs. Sensors and Actuators B: Chemical, 2017, 251, 490-494.	4.0	28
134	Probes for optical imaging: new developments. Drug Discovery Today: Technologies, 2011, 8, e87-e94.	4.0	27
135	Determination of the Labeling Density of Fluorophore–Biomolecule Conjugates with Absorption Spectroscopy. Bioconjugate Chemistry, 2012, 23, 287-292.	1.8	27
136	Excitation Energy Dependence of the Photoluminescence Quantum Yield of Core/Shell CdSe/CdS Quantum Dots and Correlation with Circular Dichroism. Chemistry of Materials, 2018, 30, 465-471.	3.2	27
137	Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Scientific Reports, 2020, 10, 19318.	1.6	27
138	Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells, 2020, 9, 1953.	1.8	27
139	High-sensitivity detection of breast tumors <i>in vivo</i> by use of a pH-sensitive near-infrared fluorescence probe. Journal of Biomedical Optics, 2012, 17, 076028.	1.4	26
140	Luminescence and Lightâ€Driven Energy and Electron Transfer from an Exceptionally Longâ€Lived Excited State of a Nonâ€Innocent Chromium(III) Complex. Angewandte Chemie, 2019, 131, 18243-18253.	1.6	26
141	Metasurface Enhanced Sensitized Photon Upconversion: Toward Highly Efficient Low Power Upconversion Applications and Nanoscale E-Field Sensors. Nano Letters, 2020, 20, 6682-6689.	4.5	26
142	LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals. Nano Research, 2021, 14, 797-806.	5.8	26
143	State-of-the Art Comparability of Corrected Emission Spectra.1. Spectral Correction with Physical Transfer Standards and Spectral Fluorescence Standards by Expert Laboratories. Analytical Chemistry, 2012, 84, 3889-3898.	3.2	25
144	pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D ₂ O. Physical Chemistry Chemical Physics, 2016, 18, 19083-19092.	1.3	25

#	Article	IF	CITATIONS
145	Fluorescence Polarization Immunoassays for the Quantification of Caffeine in Beverages. Journal of Agricultural and Food Chemistry, 2014, 62, 2337-2343.	2.4	24
146	3-Piperazinyl propenylidene indolone merocyanines: consecutive three-component synthesis and electronic properties of solid-state luminophores with AIE properties. Materials Chemistry Frontiers, 2017, 1, 2013-2026.	3.2	24
147	A Ï€â€Conjugated, Covalent Phosphinine Framework. Chemistry - A European Journal, 2019, 25, 12342-12348.	1.7	24
148	Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cdâ€Free Ternary AlS/ZnS Quantum Dots. Advanced Optical Materials, 2021, 9, 2100587.	3.6	24
149	Linking fluorescence measurements to radiometric units. Metrologia, 2006, 43, S89-S93.	0.6	23
150	Quality assurance in immunoassay performanceâ€"comparison of different enzyme immunoassays for the determination of caffeine in consumer products. Analytical and Bioanalytical Chemistry, 2013, 405, 1601-1611.	1.9	23
151	Dual Emission and Excited-State Mixed-Valence in a Quasi-Symmetric Dinuclear Ru–Ru Complex. Inorganic Chemistry, 2014, 53, 12947-12961.	1.9	23
152	Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing. Analytical and Bioanalytical Chemistry, 2014, 406, 3315-3322.	1.9	23
153	Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case. Frontiers in Chemistry, 2015, 3, 56.	1.8	23
154	Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation. ACS Nano, 2015, 9, 11642-11657.	7.3	23
155	Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1. Analyst, The, 2015, 140, 7305-7312.	1.7	23
156	Quantum Dot-PNA Conjugates for Target-Catalyzed RNA Detection. Bioconjugate Chemistry, 2018, 29, 1690-1702.	1.8	23
157	Multimodal Cleavable Reporters versus Conventional Labels for Optical Quantification of Accessible Amino and Carboxy Groups on Nano- and Microparticles. Analytical Chemistry, 2018, 90, 5887-5895.	3.2	23
158	Quality assurance in immunoassay performance-temperature effects. Analytical Methods, 2012, 4, 901.	1.3	22
159	Highly Fluorescent dye–nanoclay Hybrid Materials Made from Different Dye Classes. Langmuir, 2016, 32, 3506-3513.	1.6	22
160	Sensitization of upconverting nanoparticles with a NIR-emissive cyanine dye using a micellar encapsulation approach. Methods and Applications in Fluorescence, 2019, 7, 014003.	1.1	22
161	Diaminodicyanoquinones: Fluorescent Dyes with High Dipole Moments and Electronâ€Acceptor Properties. Angewandte Chemie - International Edition, 2019, 58, 8235-8239.	7.2	22
162	Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes. Journal of Physical Chemistry A, 2020, 124, 1787-1797.	1.1	22

#	Article	IF	Citations
163	Excitation energy migration and trapping on the surface of fluorescent poly(acrylic acid)-grafted polymer particles. Photochemical and Photobiological Sciences, 2013, 12, 729-737.	1.6	21
164	Streptavidin conjugation and quantificationâ€"a method evaluation for nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 4133-4149.	1.9	21
165	Deuterierter molekularer Rubin mit Rekord‣umineszenzquantenausbeute. Angewandte Chemie, 2018, 130, 1125-1130.	1.6	21
166	One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer. Chemical Communications, 2020, 56, 7407-7410.	2.2	21
167	Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. Mikrochimica Acta, 2021, 188, 321.	2.5	21
168	Spectroscopically Well-Characterized RGD Optical Probe as a Prerequisite for Lifetime-Gated Tumor Imaging. Molecular Imaging, 2011, 10, 7290.2011.00018.	0.7	20
169	Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals. Methods and Applications in Fluorescence, 2019, 7, 024001.	1.1	20
170	Multifold Fluorescence Enhancement in Nanoscopic Fluorophore–Clay Hybrids in Transparent Aqueous Media. Chemistry - A European Journal, 2015, 21, 7582-7587.	1.7	19
171	Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale, 2020, 12, 12589-12601.	2.8	19
172	Keeping particles brilliant $\hat{a}\in$ " simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Analytical Methods, 2012, 4, 1759.	1.3	18
173	Synthesis and characterisation of highly fluorescent core–shell nanoparticles based on Alexa dyes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
174	Protease Probes that Enable Excimer Signaling upon Scission. Angewandte Chemie - International Edition, 2014, 53, 11955-11959.	7.2	18
175	Determination of Photoluminescence Quantum Yields of Scattering Media with an Integrating Sphere: Direct and Indirect Illumination. Applied Spectroscopy, 2015, 69, 749-759.	1.2	18
176	Multiband emission from single \hat{l}^2 -NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies. Nano Research, 2021, 14, 4107-4115.	5.8	18
177	Ketone Incorporation Extends the Emission Properties of the Xanthene Scaffold Beyond 1000 nm ^{â€} . Photochemistry and Photobiology, 2022, 98, 325-333.	1.3	18
178	Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Scientific Reports, 2022, 12, 3770.	1.6	18
179	Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats. Analytical Methods, 2012, 4, 1215.	1.3	17
180	Transfer of Inorganic-Capped Nanocrystals into Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 5573-5578.	2.1	17

#	Article	IF	CITATIONS
181	An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric \hat{l}^3 -H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. Nanoscale, 2019, 11, 13458-13468.	2.8	17
182	Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging. Contrast Media and Molecular Imaging, 2012, 7, 59-67.	0.4	16
183	Thermal and Photoinduced Electron Transfer in Directional Bis(terpyridine)ruthenium(II)–(Bipyridine)platinum(II) Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 3009-3019.	1.0	16
184	Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1â ⁻³ xHgxTe nanocrystals. Journal of Materials Chemistry C, 2014, 2, 5011-5018.	2.7	16
185	Coumarin-Rhodamine Hybridsâ€"Novel Probes for the Optical Measurement of Viscosity and Polarity. Journal of Fluorescence, 2017, 27, 1949-1956.	1.3	16
186	Beam-profile-compensated quantum yield measurements of upconverting nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22016-22022.	1.3	16
187	Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness. Beilstein Journal of Nanotechnology, 2019, 10, 2410-2421.	1.5	16
188	Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. ChemPhotoChem, 2022, 6, .	1.5	16
189	Microscopic vs. macroscopic structural evolution of SiO2 sols and gels employing a tailor-made fluorescent reporter dye. Journal of Materials Chemistry, 2005, 15, 3069.	6.7	15
190	State-of-the Art Comparability of Corrected Emission Spectra. 2. Field Laboratory Assessment of Calibration Performance Using Spectral Fluorescence Standards. Analytical Chemistry, 2012, 84, 3899-3907.	3.2	15
191	Combining HR-TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots. Scientific Reports, 2020, 10, 20712.	1.6	15
192	NIRâ€NIRâ€Aufkonvertierung in molekularen Chromâ€Ytterbiumâ€Salzen. Angewandte Chemie, 2020, 132, 18966-18970.	1.6	15
193	Green‣ight Activation of Push–Pull Ruthenium(II) Complexes. Chemistry - A European Journal, 2020, 26, 6820-6832.	1.7	15
194	Solvothermal Synthesis of Lanthanideâ€doped NaYF ₄ Upconversion Crystals with Size and Shape Control: Particle Properties and Growth Mechanism. ChemNanoMat, 2021, 7, 174-183.	1.5	15
195	Preparation of coreâ€"shell structured NaYF ₄ :Yb ³⁺ /Im ³⁺ @NaYF ₄ :Yb ³⁺ /Er ³⁺ nanoparticles with high sensitivity, low resolution and good reliability and application of their fluorescence temperature properties. CrystEngComm. 2022. 24. 1752-1763.	up.}	15
196	An In Vivo Spectral Multiplexing Approach for the Cooperative Imaging of Different Disease-Related Biomarkers with Near-Infrared Fluorescent Förster Resonance Energy Transfer Probes. Journal of Nuclear Medicine, 2012, 53, 638-646.	2.8	14
197	Photophysics and Release Kinetics of Enzyme-Activatable Optical Probes Based on H-Dimerized Fluorophores on Self-Immolative Linkers. Journal of Physical Chemistry B, 2013, 117, 14336-14344.	1.2	14
198	Structural control of dye–protein binding, aggregation and hydrophilicity in a series of asymmetric cyanines. Dyes and Pigments, 2014, 103, 118-126.	2.0	14

#	Article	IF	CITATIONS
199	Multifunctional Rare-Earth Element Nanocrystals for Cell Labeling and Multimodal Imaging. ACS Biomaterials Science and Engineering, 2018, 4, 3578-3587.	2.6	14
200	Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch. Chemistry - A European Journal, 2020, 26, 17361-17365.	1.7	14
201	Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Scientific Reports, 2020, 10, 653.	1.6	14
202	Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values. New Journal of Chemistry, 2021, 45, 13755-13762.	1.4	14
203	Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis. Nano Research, 2022, 15, 9639-9646.	5.8	14
204	Glycerol-Based Contrast Agents: A Novel Series of Dendronized Pentamethine Dyes. Bioconjugate Chemistry, 2015, 26, 773-781.	1.8	13
205	Bioimaging: Shaping Luminescent Properties of Yb ³⁺ and Ho ³⁺ Coâ€Doped Upconverting Core–Shell βâ€NaYF ₄ Nanoparticles by Dopant Distribution and Spacing (Small) T	j ET5Q2q11	0.7⁄84 314 rg
206	"Green―synthesis of highly luminescent lead-free Cs ₂ Ag _{<i>x</i>} Na _{1â^²<i>x</i>>perovskites. Journal of Materials Chemistry C, 2022, 10, 9938-9944.}	2∟br>Cl<	su b3 6
207	Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins**. Chemistry - A European Journal, 2022, 28, .	1.7	13
208	Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Analytical Chemistry, 2022, 94, 9656-9664.	3.2	13
209	CT-Operated Bifunctional Fluorescent Probe Based on a Pretwisted Donor–Donor–Biphenyl. Journal of Fluorescence, 2006, 16, 337-348.	1.3	12
210	Chiral, J-Aggregate-Forming Dyes for Alternative Signal Modulation Mechanisms in Self-Immolative Enzyme-Activatable Optical Probes. Journal of Physical Chemistry B, 2016, 120, 877-885.	1.2	12
211	Luminescence lifetime encoding in time-domain flow cytometry. Scientific Reports, 2018, 8, 16715.	1.6	12
212	Novel PET-pperated rosamine pH-sensor dyes with substitution pattern-tunable p <i>K</i> _a values and temperature sensitivity. New Journal of Chemistry, 2021, 45, 13934-13940.	1.4	12
213	Quantification of Anisotropy-Related Uncertainties in Relative Photoluminescence Quantum Yield Measurements of Nanomaterials – Semiconductor Quantum Dots and Rods. Zeitschrift Fur Physikalische Chemie, 2015, 229, 153-165.	1.4	12
214	Influence of the donor substituent and acceptor alkylation on the structure–analytical properties of mono- and bifunctional biphenyl-type fluorescent reporters. Journal of Molecular Structure, 2008, 874, 14-27.	1.8	11
215	<i>Standardization of Fluorescence Measurements: Criteria for the Choice of Suitable Standards and Approaches to Fitâ€forâ€Purpose Calibration Tools</i> Annals of the New York Academy of Sciences, 2008, 1130, 35-43.	1.8	11
216	Anchoring of Fluorophores to Plasma-chemically Modified Polymer Surfaces and the Effect of Cucurbit[6]uril on Dye Emission. Journal of Fluorescence, 2009, 19, 229-237.	1.3	11

#	Article	IF	Citations
217	Simple Calibration and Validation Standards for Fluorometry. Reviews in Fluorescence, 2009, , 1-31.	0.5	11
218	Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29. European Journal of Medicinal Chemistry, 2010, 45, 5561-5566.	2.6	11
219	Polymer-and Glass-based Fluorescence Standards for the Near Infrared (NIR) Spectral Region. Journal of Fluorescence, 2011, 21, 953-961.	1.3	11
220	Synthesis of NIRâ€Emitting InAsâ€Based Core/Shell Quantum Dots with the Use of Tripyrazolylarsane as Arsenic Precursor. Particle and Particle Systems Characterization, 2018, 35, 1800175.	1.2	11
221	Lifetime encoding in flow cytometry for bead-based sensing of biomolecular interaction. Scientific Reports, 2020, 10, 19477.	1.6	11
222	Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles <i>via</i> Ca ²⁺ doping for a nitric oxide release platform. Journal of Materials Chemistry B, 2020, 8, 6481-6489.	2.9	11
223	Need for and Metrological Approaches Towards Standardization of Fluorescence Measurements from the View of National Metrology Institutes. Springer Series on Fluorescence, 2008, , 33-62.	0.8	11
224	Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor. Scientific Reports, 2022, 12 , .	1.6	11
225	Anbindung von Fluoreszenzfarbstoffen an plasmachemisch funktionalisierte und Cucurbiturilâ€modifizierte OberflA ĕ hen. Vakuum in Forschung Und Praxis, 2007, 19, 31-37.	0.0	10
226	Spectroscopic and Photophysical Properties of dUTP and Internally DNA Bound Fluorophores for Optimized Signal Detection in Biological Formats. Photochemistry and Photobiology, 2012, 88, 867-875.	1.3	10
227	Quality assurance in immunoassay performance – carbamazepine immunoassay format evaluation and application on surface and waste water. Analytical Methods, 2013, 5, 3754.	1.3	10
228	Three-in-One Crystal: The Coordination Diversity of Zinc Polypyridine Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 5033-5040.	1.0	10
229	Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. Journal of Physical Chemistry A, 2018, 122, 9813-9820.	1.1	10
230	AufwÃÆskonvertierende NaYF ₄ :Yb,Er/NaYF ₄ â€Kern/Schaleâ€Nanokristalle mit hoher Lumineszenzquantenausbeute. Angewandte Chemie, 2018, 130, 8901-8905.	1.6	10
231	Fluorescence Quantum Yield and Single-Particle Emission of CdSe Dot/CdS Rod Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 24338-24346.	1.5	10
232	Multimodal Cleavable Reporters for Quantifying Carboxy and Amino Groups on Organic and Inorganic Nanoparticles. Scientific Reports, 2019, 9, 17577.	1.6	10
233	Substitution pattern controlled aggregation-induced emission in donor–acceptor–donor dyes with one and two propeller-like triphenylamine donors. Physical Chemistry Chemical Physics, 2020, 22, 14142-14154.	1.3	10
234	Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale, 2020, 12, 10592-10599.	2.8	10

#	Article	IF	CITATIONS
235	Communication of Bichromophore Emission upon Aggregation – Aroylâ€∢i>S,N⟨/i>â€ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry - A European Journal, 2021, 27, 13426-13434.	1.7	10
236	Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging. Chemical Communications, 2022, 58, 2967-2970.	2.2	10
237	Asymmetrically bridged aroyl- <i>S</i> , <i>N</i> -ketene acetal-based multichromophores with aggregation-induced tunable emission. Chemical Science, 2022, 13, 5374-5381.	3.7	10
238	Quantification of the Activator and Sensitizer Ion Distributions in NaYF ₄ :Yb ³⁺ , Er ³⁺ Upconverting Nanoparticles Via Depthâ€Profiling with Tender Xâ€Ray Photoemission. Small, 2022, 18, .	5.2	10
239	Coreâe"Shell NaYF ₄ :Yb ³⁺ /Tm ³⁺ @NaGdF ₄ :Ce ³⁺ /Eu ^{3+< Nanoparticles for Upconversion and Downconversion Dual-Mode Fluorescence-Based Temperature Sensing, ACS Applied Nano Materials, 2022, 5, 9266-9276.}	/sup>	10
240	Linking Fluorometry to Radiometry with Physical and Chemical Transfer Standards: Instrument Characterization and Traceable Fluorescence Measurements. Springer Series on Fluorescence, 2008, , 65-99.	0.8	9
241	Luminescent Nanoparticles for Chemical Sensing and Imaging. Reviews in Fluorescence, 2017, , 71-109.	0.5	9
242	Influence of Label and Charge Density on the Association of the Therapeutic Monoclonal Antibodies Trastuzumab and Cetuximab Conjugated to Anionic Fluorophores. ChemBioChem, 2017, 18, 101-110.	1.3	9
243	Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles. ChemPhotoChem, 2020, 4, 668-673.	1.5	9
244	Efficient Tripletâ€Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angewandte Chemie, 2022, 134, .	1.6	9
245	Reaction of a N-anthrylcarbonylthiourea derivative with Cu2+ or H+: unusual rearrangement to a highly fluorescent S-(9-anthryl)isothiouronium salt. Perkin Transactions II RSC, 2000, , 1209-1214.	1.1	8
246	<i>Toward Improved Biochips Based on Rolling Circle Amplificationâ€"Influences of the Microenvironment on the Fluorescence Properties of Labeled DNA Oligonucleotides</i> the New York Academy of Sciences, 2008, 1130, 287-292.	1.8	8
247	Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy. Nanoscale, 2018, 10, 7147-7154.	2.8	8
248	Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation. Journal of Chromatography A, 2020, 1626, 461392.	1.8	8
249	C3A passivation with gypsum and hemihydrate monitored by optical spectroscopy. Cement and Concrete Research, 2020, 133, 106082.	4.6	8
250	Redox Switchable Ionophores for Heavy and Transition Metal Cations. European Journal of Organic Chemistry, 2000, 2000, 539-542.	1.2	7
251	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 799-802.	1.1	7
252	<i>Acoustically Levitated Droplets</i> Annals of the New York Academy of Sciences, 2008, 1130, 78-84.	1.8	7

#	Article	IF	CITATIONS
253	Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison. Springer Series on Fluorescence, 2010, , 3-40.	0.8	7
254	Fluorescent Reporters and Optical Probes. , 2014, , 85-109.		7
255	Red emissive nanoclay hybrids in transparent aqueous dispersionâ€"towards optical applications in biophotonics. Journal of Luminescence, 2016, 169, 728-732.	1.5	7
256	Metasurfaceâ€Enhanced Photon Upconversion upon 1550Ânm Excitation. Advanced Optical Materials, 2021, 9, 2101285.	3.6	7
257	Complexes of the Mycotoxins Citrinin and Ochratoxin A with Aluminum Ions and their Spectroscopic Properties. Toxins, 2018, 10, 538.	1.5	6
258	Close Spectroscopic Look at Dye-Stained Polymer Microbeads. Journal of Physical Chemistry C, 2018, 127, 12782-12791.	1.5	6
259	Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores. Analytical Chemistry, 2019, 91, 8827-8834.	3.2	6
260	Fluorescence calibration standards made from broadband emitters encapsulated in polymer beads for fluorescence microscopy and flow cytometry. Analytical and Bioanalytical Chemistry, 2020, 412, 6499-6507.	1.9	6
261	Festkörperemittierende Aroyl―S , N â€Ketenacetale mit steuerbaren aggregationsinduzierten Emissionseigenschaften. Angewandte Chemie, 2020, 132, 10123-10127.	1.6	6
262	Fluorescence Quenching in J-Aggregates through the Formation of Unusual Metastable Dimers. Journal of Physical Chemistry B, 2021, 125, 4438-4446.	1.2	6
263	Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Analytical and Bioanalytical Chemistry, 2022, 414, 4427-4439.	1.9	6
264	Linking fluorescence spectroscopy to the scale of spectral sensitivity: the BAM reference fluorometer., 2005,,.		5
265	Narrow-Band Emitting Solid Fluorescence Reference Standard with Certified Intensity Pattern. Analytical Chemistry, 2015, 87, 7204-7210.	3.2	5
266	Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Analytical and Bioanalytical Chemistry, 2017, 409, 1519-1529.	1.9	5
267	Fluorescence of a chiral pentaphene derivative derived from the hexabenzocoronene Motif. Chemical Communications, 2019, 55, 10515-10518.	2.2	5
268	Time-resolved FRET in AgInS ₂ /ZnS-CdSe/ZnS quantum dot systems. Nanotechnology, 2019, 30, 195501.	1.3	5
269	Covalent Coupling Of Fluorophores To Polymer Surface-Bonded Functional Groups., 0,, 171-192.		5
270	Effect of Ca ²⁺ doping on the upconversion luminescence properties of NaYF ₄ :Yb ³⁺ /Tm ³⁺ nanoparticles and study of its temperature measurement performance. CrystEngComm, 2022, 24, 4887-4898.	1.3	5

#	Article	IF	Citations
271	Glass based fluorescence reference materials used for optical and biophotonic applications. , 2006, , .		4
272	Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles – Relation between electronic properties and packing motifs. Journal of Molecular Structure, 2011, 988, 35-46.	1.8	4
273	Fluorescent quantum dot hydrophilization with PAMAM dendrimer. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	4
274	Spectroscopic Characterization of Plasma – Chemically Functionalized and Fluorophore-Labeled Polymer Surfaces. Reviews in Fluorescence, 2010, , 139-160.	0.5	4
275	â^'808 nm-activated Ca ²⁺ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis. Methods and Applications in Fluorescence, 2022, 10, 024003.	1.1	4
276	One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands. Inorganic Chemistry, 2022, 61, 7207-7211.	1.9	4
277	Monoalkylated 4′-aryl-substituted terpyridines. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o402-o404.	0.4	3
278	<i>Fluorescence Measurements on Functionalized Polymer Surfacesâ€"Problems and Troubleshooting</i> . Annals of the New York Academy of Sciences, 2008, 1130, 28-34.	1.8	3
279	Fluorophore‣abeled Siloxaneâ€Based Nanoparticles for Biomedical Applications. Macromolecular Symposia, 2011, 309-310, 141-146.	0.4	3
280	Chemical behavior and spectroscopic properties of rare earth borates in glazes. Journal of Luminescence, 2016, 170, 387-394.	1.5	3
281	Integration of \hat{I}^2 -NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 711-715.	0.2	3
282	Quantitative Measurements of the pH-Sensitive Quantum Yield of Fluorophores in Mesoporous Silica Thin Films Using a Drexhage-Type Experiment. Journal of Physical Chemistry C, 2019, 123, 20468-20475.	1.5	3
283	Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions. Polymer Testing, 2019, 78, 105996.	2.3	3
284	Optical Characterization of Sodium Fluorescein In Vitro and Ex Vivo. Frontiers in Oncology, 2021, 11, 654300.	1.3	3
285	Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals. Nano Research, 2022, 15, 2362-2373.	5 . 8	3
286	Usefulness of a Darwinian System in a Biotechnological Application: Evolution of Optical Window Fluorescent Protein Variants under Selective Pressure. PLoS ONE, 2014, 9, e107069.	1.1	3
287	Interlaboratory Comparison on the Quantification of Total and Accessible Amine Groups on Silica Nanoparticles with qNMR and Optical Assays. Analytical Chemistry, 2021, 93, 15271-15278.	3.2	3
288	Trends in selected fields of reference material production. Analytical and Bioanalytical Chemistry, 2022, 414, 4281-4289.	1.9	3

#	Article	IF	CITATIONS
289	Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy. Analytical and Bioanalytical Chemistry, 2022, , 1.	1.9	3
290	Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization. Scientific Reports, 2022, 12 , .	1.6	3
291	Comparability of Fluorescence Microscopy Data and Need for Instrument Characterization of Spectral Scanning Microscopes. Springer Series on Fluorescence, 2008, , 89-116.	0.8	2
292	Quality Assurance in Fluorometry. Journal of Fluorescence, 2005, 15, 205-205.	1.3	2
293	Flouescence reference materials used for optical and biophotonic applications. , 2007, , .		2
294	The toolbox of fluorescence standards: flexible calibration tools for the standardization of fluorescence-based measurements. Proceedings of SPIE, $2010, \ldots$	0.8	2
295	Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control. Analytical and Bioanalytical Chemistry, 2015, 407, 3181-3191.	1.9	2
296	Diaminodicyanochinone – Fluoreszenzfarbstoffe mit hohem Dipolmoment und Elektronenakzeptorâ€Eigenschaften. Angewandte Chemie, 2019, 131, 8321-8326.	1.6	2
297	The effect of a polycarboxylate ether on C3A / CaSO4·2H2O passivation monitored by optical spectroscopy. Construction and Building Materials, 2021, 270, 121856.	3.2	2
298	Substitution Pattern-Controlled Fluorescence Lifetimes of Fluoranthene Dyes. Journal of Physical Chemistry B, 2021, 125, 1207-1213.	1.2	2
299	Anorganic fluorescence reference materials for decay time of fluorescence emission. Proceedings of SPIE, 2008, , .	0.8	1
300	Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes. Proceedings of SPIE, $2011,\ldots$	0.8	1
301	Dye-biomolecule conjugates and NIR-fluorescent particles for targeting of disease-related biomarkers. , 2011, , .		1
302	Determination of the Photoluminescence Quantum Yield of Dilute Dye Solutions (IUPAC Technical) Tj ETQq0 0 0	rgBT /Ovei	rlock 10 Tf 50
303	Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores. Physical Chemistry Chemical Physics, 2021, 23, 17521-17529.	1.3	1
304	Tumore abbilden, Biomarker nachweisen, Messungen standardisieren. Nachrichten Aus Der Chemie, 2021, 69, 75-77.	0.0	1
305	Reactive Quantum Dot-Based FRET Systems for Target-Catalyzed Detection of RNA. Methods in Molecular Biology, 2020, 2105, 187-198.	0.4	1
306	Monoalkylated 4′-Aryl-Substituted Terpyridines. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	Citations
307	Simple Approaches to Fluorescence Lifetime Standards Using Dye-Quencher Pairs. Biomedizinische Technik, 2012, 57, .	0.9	0
308	Fast and Reliable Measurement of Photoluminescence Quantum Yields forÂthe Development of Fluorescent Probes. Biophysical Journal, 2013, 104, 345a.	0.2	0
309	Absolute fluorescence measurements > 1000 nm: setup design, calibration and standards (Conference Presentation)., 2016,,.		0
310	Photo-Chromium: Sensitizer for Visible-Light-Induced Oxidative Câ^'H Bond Functionalization-Electron or Energy Transfer?. ChemPhotoChem, 2017, 1, 342-343.	1.5	0
311	Titelbild: Luminescence and Lightâ€Driven Energy and Electron Transfer from an Exceptionally Longâ€Lived Excited State of a Nonâ€Innocent Chromium(III) Complex (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18045-18045.	1.6	0
312	Utilizing optical spectroscopy and $2\hat{a} \in ^2$, $7\hat{a} \in ^2$ -difluorofluorescein to characterize the early stages of cement hydration. Methods and Applications in Fluorescence, 2022, 10, 015001.	1.1	0
313	Signal-Relevant Properties of Fluorescent Labels and Optical Probes and Their Determination. , 2014, , 15-26.		0
314	Standardization of fluorescence measurements in the UV/vis/NIR/IR: needs for and requirements on calibration tools (Conference Presentation). , 2017, , .		0
315	Effect of particle architecture, dopant concentration, and excitation power density on the luminescence efficiency of upconversion nanocrystals (Conference Presentation)., 2018,,.		0
316	Determining Quantum Efficiency of the pH-sensitive Dye in Mesoporous Thin Films Using a Metal Sphere. , $2019, \ldots$		0
317	Lumineszenzmessungen â€ê€Standards und die Vergleichbarkeit der Ergebnisse. Nachrichten Aus Der Chemie, 2021, 69, 45-48.	0.0	0
318	Cover Feature: Tailoring the NIRâ€II Photoluminescence of Single Thiolated Au ₂₅ Nanoclusters by Selective Binding to Proteins (Chem. Eur. J. 39/2022). Chemistry - A European Journal, 2022, 28, .	1.7	0