Richard K Kobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846970/publications.pdf Version: 2024-02-01

RICHARD K KORE

#	Article	IF	CITATIONS
1	Forest Models Defined by Field Measurements: Estimation, Error Analysis and Dynamics. Ecological Monographs, 1996, 66, 1-43.	5.4	997
2	RESORPTION EFFICIENCY DECREASES WITH INCREASING GREEN LEAF NUTRIENTS IN A GLOBAL DATA SET. Ecology, 2005, 86, 2780-2792.	3.2	320
3	LIGHT GRADIENT PARTITIONING AMONG TROPICAL TREE SPECIES THROUGH DIFFERENTIAL SEEDLING MORTALITY AND GROWTH. Ecology, 1999, 80, 187-201.	3.2	270
4	Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 2012, 82, 189-203.	5.4	128
5	Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 2010, 91, 166-179.	3.2	127
6	Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecology Letters, 2011, 14, 503-510.	6.4	123
7	Sapling size influences shade tolerance ranking among southern boreal tree species. Journal of Ecology, 2006, 94, 471-480.	4.0	109
8	Conspecific plant–soil feedbacks reduce survivorship and growth of tropical tree seedlings. Journal of Ecology, 2010, 98, 396-407.	4.0	100
9	A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 2012, 100, 42-64.	4.0	92
10	Divergence from the growth–survival tradeâ€off and extreme high growth rates drive patterns of exotic tree invasions in closedâ€canopy forests. Journal of Ecology, 2010, 98, 778-789.	4.0	90
11	Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species. Canadian Journal of Forest Research, 2008, 38, 2382-2393.	1.7	88
12	Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan. Oecologia, 2006, 147, 119-133.	2.0	81
13	Conspecific and heterospecific plant–soil feedbacks influence survivorship and growth of temperate tree seedlings. Journal of Ecology, 2010, 98, 408-418.	4.0	63
14	Neighbour interactions strengthen with increased soil resources in a northern hardwood forest. Journal of Ecology, 2011, 99, 1358-1372.	4.0	47
15	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
16	Fruit production is influenced by tree size and sizeâ€asymmetric crowding in a wet tropical forest. Ecology and Evolution, 2019, 9, 1458-1472.	1.9	34
17	Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia, 2015, 179, 853-861.	2.0	32
18	Masting synchrony in northern hardwood forests: superâ€producers govern population fruit production. Journal of Ecology, 2017, 105, 987-998.	4.0	31

RICHARD K KOBE

#	Article	IF	CITATIONS
19	Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza, 2017, 27, 211-223.	2.8	31
20	Rare species advantage? Richness of damage types due to natural enemies increases with species abundance in a wet tropical forest. Journal of Ecology, 2013, 101, 846-856.	4.0	29
21	Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest. Ecology, 2016, 97, 2406-2415.	3.2	25
22	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
23	Partitioning of understorey light and dry-season soil moisture gradients among seedlings of four rain-forest tree species in Madagascar. Journal of Tropical Ecology, 2007, 23, 569-579.	1.1	16
24	Modeling Complex Spatial Dependencies: Low-Rank Spatially Varying Cross-Covariances With Application to Soil Nutrient Data. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18, 274-298.	1.4	14
25	Tree species and soil nutrients drive tropical reforestation more than associations with mycorrhizal fungi. Plant and Soil, 2017, 410, 283-297.	3.7	12
26	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
27	Short-lived legacies of Prunus serotina plant–soil feedbacks. Oecologia, 2021, 196, 529-538.	2.0	7
28	A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest. PLoS ONE, 2016, 11, e0167139.	2.5	6
29	Oomycetes associated with Prunus serotina persist in soil after tree harvest. Fungal Ecology, 2021, 53, 101094	1.6	3