List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846826/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline.<br>Environmental Science & Technology, 2013, 47, 9904-9910.                                                                                    | 10.0 | 541       |
| 2  | Adsorption and Desorption of U(VI) on Functionalized Graphene Oxides: A Combined Experimental and Theoretical Study. Environmental Science & Technology, 2015, 49, 4255-4262.                                                        | 10.0 | 473       |
| 3  | Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray<br>Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environmental Science &<br>Technology, 2012, 46, 6020-6027. | 10.0 | 470       |
| 4  | Adsorption of 4- <i>n</i> -Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A<br>Combined Experimental and Theoretical Studies. Environmental Science & Technology, 2015, 49,<br>9168-9175.                          | 10.0 | 427       |
| 5  | Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous<br>Nanofibers. Environmental Science & Technology, 2016, 50, 4459-4467.                                                                    | 10.0 | 398       |
| 6  | Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale<br>zerovalent iron. Journal of Hazardous Materials, 2014, 280, 399-408.                                                                 | 12.4 | 339       |
| 7  | Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. Journal of Hazardous Materials, 2015, 295, 127-137.                                                                           | 12.4 | 227       |
| 8  | Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Science of the Total<br>Environment, 2019, 651, 1020-1028.                                                                                             | 8.0  | 220       |
| 9  | The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Environmental Radioactivity, 2012, 105, 40-47.                                                                                       | 1.7  | 193       |
| 10 | Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides<br>for the Efficient Removal of U(VI) from Wastewater Solutions. ACS Sustainable Chemistry and<br>Engineering, 2017, 5, 1173-1185.   | 6.7  | 187       |
| 11 | Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016, 313, 253-261.                                                             | 12.4 | 169       |
| 12 | Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Physical Chemistry Chemical Physics, 2015, 17, 398-406.                                                            | 2.8  | 151       |
| 13 | Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides.<br>Chemistry - an Asian Journal, 2013, 8, 2755-2761.                                                                                  | 3.3  | 150       |
| 14 | Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Science of the Total Environment, 2018, 630, 951-959.                                                                           | 8.0  | 144       |
| 15 | Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chemical Engineering Journal, 2014, 246, 268-276.                                                  | 12.7 | 137       |
| 16 | Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution.<br>Chemical Engineering Journal, 2015, 269, 1-8.                                                                                      | 12.7 | 131       |
| 17 | Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of<br><sup>238</sup> U(VI) and <sup>241</sup> Am(III). Environmental Science & Technology, 2017, 51,<br>12274-12282.                     | 10.0 | 127       |
| 18 | Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 2019, 248, 906-915.                                                                           | 7.5  | 122       |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous<br>Solutions. Environmental Science & Technology, 2017, 51, 9227-9234.                                                                       | 10.0 | 114       |
| 20 | Construction of Layered Double Hydroxides/Hollow Carbon Microsphere Composites and Its<br>Applications for Mutual Removal of Pb(II) and Humic Acid from Aqueous Solutions. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 11268-11279. | 6.7  | 92        |
| 21 | Recent investigations and progress in environmental remediation by using covalent organic<br>framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360.                                                    | 9.3  | 92        |
| 22 | Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides. Environmental Science: Nano, 2016, 3, 1318-1326.                                                           | 4.3  | 88        |
| 23 | Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environmental Pollution, 2019, 248, 332-338.                                                                                        | 7.5  | 81        |
| 24 | Potential environmental applications of MXenes: A critical review. Chemosphere, 2021, 271, 129578.                                                                                                                                             | 8.2  | 71        |
| 25 | Carbon materials for extraction of uranium from seawater. Chemosphere, 2021, 278, 130411.                                                                                                                                                      | 8.2  | 71        |
| 26 | Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Environmental Pollution, 2019, 248, 916-928.                                                                               | 7.5  | 70        |
| 27 | Spectroscopic and Modeling Investigation of Eu(III)/U(VI) Sorption on Nanomagnetite from Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 5493-5502.                                                                     | 6.7  | 68        |
| 28 | Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. Journal of<br>Hazardous Materials, 2017, 322, 488-498.                                                                                                | 12.4 | 63        |
| 29 | Simultaneous removal of U(VI) and Re(VII) by highly efficient functionalized ZIF-8 nanosheets<br>adsorbent. Journal of Hazardous Materials, 2020, 393, 122398.                                                                                 | 12.4 | 59        |
| 30 | A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions. Environmental Pollution, 2019, 249, 398-405.                                                   | 7.5  | 57        |
| 31 | The efficient enrichment of U( <scp>vi</scp> ) by graphene oxide-supported chitosan. RSC Advances, 2014, 4, 61919-61926.                                                                                                                       | 3.6  | 54        |
| 32 | Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. Chemical Engineering Journal, 2019, 357, 66-74.                                                             | 12.7 | 53        |
| 33 | Influence of carbonate on sequestration of U(VI) on perovskite. Journal of Hazardous Materials, 2019, 364, 100-107.                                                                                                                            | 12.4 | 51        |
| 34 | Modeling and EXAFS investigation of U(VI) sequestration on Fe3O4/PCMs composites. Chemical Engineering Journal, 2019, 369, 736-744.                                                                                                            | 12.7 | 50        |
| 35 | Mechanistic investigation of U(VI) sequestration by zero-valent iron/activated carbon composites.<br>Chemical Engineering Journal, 2019, 362, 99-106.                                                                                          | 12.7 | 50        |
| 36 | The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites. Environmental Research, 2020, 182, 109090.                                                                                                                               | 7.5  | 47        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Decontamination of Sr(II) on Magnetic Polyaniline/Graphene Oxide Composites: Evidence from<br>Experimental, Spectroscopic, and Modeling Investigation. ACS Sustainable Chemistry and Engineering,<br>2017, 5, 6924-6931. | 6.7  | 46        |
| 38 | A robust prediction of U(VI) sorption on Fe3O4/activated carbon composites with surface complexation model. Environmental Research, 2020, 185, 109467.                                                                   | 7.5  | 46        |
| 39 | Bioaccumulation and transformation of U(VI) by sporangiospores of Mucor circinelloides. Chemical<br>Engineering Journal, 2019, 362, 81-88.                                                                               | 12.7 | 44        |
| 40 | Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: A review. Environmental Research, 2020, 188, 109855.                                             | 7.5  | 43        |
| 41 | Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH).<br>Radiochimica Acta, 2014, 102, 797-804.                                                                                      | 1.2  | 41        |
| 42 | Accumulation of Co(II) and Eu(III) by the mycelia of Aspergillus niger isolated from radionuclide-contaminated soils. Chemical Engineering Journal, 2016, 304, 186-193.                                                  | 12.7 | 38        |
| 43 | Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens.<br>Journal of Environmental Radioactivity, 2019, 203, 117-124.                                                     | 1.7  | 37        |
| 44 | Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol A over Co(II)-Modified<br>TiO <sub>2</sub> . Langmuir, 2019, 35, 276-283.                                                                          | 3.5  | 36        |
| 45 | Removal of radiocobalt from aqueous solution by oxidized MWCNT. Journal of Radioanalytical and Nuclear Chemistry, 2012, 291, 787-795.                                                                                    | 1.5  | 35        |
| 46 | Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite.<br>Journal of Radioanalytical and Nuclear Chemistry, 2011, 289, 467-477.                                            | 1.5  | 34        |
| 47 | The sequestration of U(VI) on functional $\hat{l}^2$ -cyclodextrin-attapulgite nanorods. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 385-391.                                                           | 1.5  | 33        |
| 48 | Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review. Environmental Pollution, 2021, 278, 116861.                                                                    | 7.5  | 32        |
| 49 | Characterization of radioactive cobalt on graphene oxide by macroscopic and spectroscopic techniques. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1979-1986.                                            | 1.5  | 31        |
| 50 | Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As(V): Batch and XAFS investigation. Environmental Pollution, 2018, 237, 228-236.                                                                | 7.5  | 30        |
| 51 | The influence of humic acid on U(VI) sequestration by calcium titanate. Chemical Engineering Journal, 2019, 368, 598-605.                                                                                                | 12.7 | 27        |
| 52 | Effect of Staphylococcus epidermidis on U(VI) sequestration by Al-goethite. Journal of Hazardous<br>Materials, 2019, 368, 52-62.                                                                                         | 12.4 | 27        |
| 53 | Removal of As(V) from wastewater by chemically modified biomass. Journal of Molecular Liquids, 2015, 206, 262-267.                                                                                                       | 4.9  | 23        |
| 54 | Accumulation of U(VI) on the Pantoea sp. TW18 isolated from radionuclide-contaminated soils.<br>Journal of Environmental Radioactivity, 2018, 192, 219-226.                                                              | 1.7  | 23        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Complexation of radionuclide 152+154Eu(III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy. Science China Chemistry, 2017, 60, 107-114.                          | 8.2  | 22        |
| 56 | Spectroscopic and theoretical investigation on efficient removal of U(VI) by amine-containing polymers. Chemical Engineering Journal, 2019, 367, 94-101.                                                            | 12.7 | 21        |
| 57 | Interaction between Al2O3 and different sizes of GO in aqueous environment. Environmental Pollution, 2018, 243, 1802-1809.                                                                                          | 7.5  | 18        |
| 58 | One-Step Arc-Produced Amino-Functionalized Graphite-Encapsulated Magnetic Nanoparticles for the Efficient Removal of Radionuclides. ACS Applied Nano Materials, 2019, 2, 385-394.                                   | 5.0  | 15        |
| 59 | Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera.<br>Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1151-1160.                                         | 1.5  | 14        |
| 60 | One-step method to prepare core-shell magnetic nanocomposite encapsulating silver nanoparticles with superior catalytic and antibacterial activity. Journal of Colloid and Interface Science, 2022, 607, 1730-1740. | 9.4  | 13        |
| 61 | Enhanced accumulation of U(VI) by Aspergillus oryzae mutant generated by dielectric barrier discharge air plasma. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1353-1360.                           | 1.5  | 12        |
| 62 | Immobilization of As(V) in <i>Rhizopus oryzae</i> Investigated by Batch and XAFS Techniques. ACS Omega, 2016, 1, 899-906.                                                                                           | 3.5  | 10        |
| 63 | Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. Journal of Molecular Liquids, 2019, 280, 34-39.                                                                             | 4.9  | 10        |
| 64 | Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects.<br>Environmental Research, 2021, 194, 110691.                                                                 | 7.5  | 10        |
| 65 | The Synthesis of Z-Scheme MoS2/g-C3N4 Heterojunction for Enhanced Visible-Light-Driven Photoreduction of Uranium. Catalysis Letters, 2022, 152, 1981-1989.                                                          | 2.6  | 10        |
| 66 | Improved Eu(III) immobilization by Cladosporium sphaerospermum induced by low-temperature plasma.<br>Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 963-970.                                          | 1.5  | 8         |
| 67 | Tolerance and Bioaccumulation of Arsenate by Aspergillus Oryzae TLWK-09 Isolated from Arsenic-Contaminated Soils. Water, Air, and Soil Pollution, 2018, 229, 1.                                                     | 2.4  | 8         |
| 68 | Low temperature plasma induced apoptosis in CNEâ€⊋Z cells through endoplasmic reticulum stress and mitochondrial dysfunction pathways. Plasma Processes and Polymers, 2018, 15, 1600249.                            | 3.0  | 7         |
| 69 | Ultrafast and highly capture of U(VI) by hierarchical mesoporous carbon. Radiochimica Acta, 2020, 108, 717-726.                                                                                                     | 1.2  | 6         |
| 70 | Fabrication of oxidized multiwalled carbon nanotubes for the immobilization of U(VI) from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 361-369.                                  | 1.5  | 5         |
| 71 | Boosting photocatalytic efficiency of MoS2/CdS by modulating morphology. Environmental Science and Pollution Research, 2022, 29, 73282-73291.                                                                       | 5.3  | 4         |
| 72 | Cold Atmospheric Plasma Inhibits the Proliferation of CAL-62 Cells through the ROS-Mediated<br>PI3K/Akt/mTOR Signaling Pathway. Science and Technology of Nuclear Installations, 2022, 2022, 1-12.                  | 0.8  | 3         |

WENCHENG SONG

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Accumulation of 152+154Eu(III) by Aspergillus sydowii and Trichoderma harzianum. Journal of<br>Environmental Radioactivity, 2018, 193-194, 75-81.                                   | 1.7 | 2         |
| 74 | Comparative Transcriptome Analysis Providing Resistance Mechanism of <i>Aspergillus oryzae</i> Under Arsenate Stress. Geomicrobiology Journal, 2021, 38, 426-435.                   | 2.0 | 2         |
| 75 | Enhancement of U(VI) biosorption by Trichoderma harzianum mutant obtained by a cold atmospheric plasma jet. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 1325-1333. | 1.5 | 2         |
| 76 | Comparative transcriptome analysis providing inhibitory mechanism of lung cancer A549 cells by radioactive 1251 seed. Journal of Radioanalytical and Nuclear Chemistry, 0, , 1.     | 1.5 | 1         |