
Nawa Raj Baral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology, 2017, 232, 331-343.	9.6	146
2	Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 2014, 98, 9151-9172.	3.6	123
3	Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy and Environmental Science, 2019, 12, 807-824.	30.8	109
4	Techno-Economic Analysis of Cellulosic Butanol Production from Corn Stover through Acetone–Butanol–Ethanol Fermentation. Energy & Fuels, 2016, 30, 5779-5790.	5.1	95
5	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	6.7	89
6	Technoâ€economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuels, Bioproducts and Biorefining, 2016, 10, 70-88.	3.7	79
7	Technoeconomic analysis for biofuels and bioproducts. Current Opinion in Biotechnology, 2021, 67, 58-64.	6.6	59
8	Accumulation of high-value bioproducts <i>in planta</i> can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8639-8648.	7.1	57
9	Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. Science Advances, 2021, 7, .	10.3	54
10	High-Efficiency Conversion of Ionic Liquid-Pretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry and Engineering, 2021, 9, 4042-4053.	6.7	40
11	Use of ensiled biomass sorghum increases ionic liquid pretreatment efficiency and reduces biofuel production cost and carbon footprint. Green Chemistry, 2021, 23, 3127-3140.	9.0	37
12	Uncertainties in corn stover feedstock supply logistics cost and life-cycle greenhouse gas emissions for butanol production. Applied Energy, 2017, 208, 1343-1356.	10.1	32
13	Supply and value chain analysis of mixed biomass feedstock supply system for lignocellulosic sugar production. Biofuels, Bioproducts and Biorefining, 2019, 13, 635-659.	3.7	30
14	Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries. Environmental Science & Technology, 2020, 54, 12810-12819.	10.0	29
15	Production Cost and Carbon Footprint of Biomass-Derived Dimethylcyclooctane as a High-Performance Jet Fuel Blendstock. ACS Sustainable Chemistry and Engineering, 2021, 9, 11872-11882.	6.7	21
16	Supply Cost and Life-Cycle Greenhouse Gas Footprint of Dry and Ensiled Biomass Sorghum for Biofuel Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 15855-15864.	6.7	20
17	Probabilistic Lifecycle Assessment of Butanol Production from Corn Stover Using Different Pretreatment Methods. Environmental Science & Technology, 2018, 52, 14528-14537.	10.0	19
18	Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy. Journal of Cleaner Production, 2021, 279, 123593.	9.3	17

Nawa Raj Baral

#	Article	IF	CITATIONS
19	Greenhouse Gas Footprint, Water-Intensity, and Production Cost of Bio-Based Isopentenol as a Renewable Transportation Fuel. ACS Sustainable Chemistry and Engineering, 2019, 7, 15434-15444.	6.7	16
20	Techno-economic analysis of utilization of stillage from a cellulosic biorefinery. Fuel Processing Technology, 2017, 166, 59-68.	7.2	15
21	Identifying Forage Sorghum Ideotypes for Advanced Biorefineries. ACS Sustainable Chemistry and Engineering, 2021, 9, 7873-7881.	6.7	11
22	Alkanolamines as Dual Functional Solvents for Biomass Deconstruction and Bioenergy Production. Green Chemistry, 2021, 23, 8611-8631.	9.0	8
23	Cooking fuel from <i>Jatropha Curcas</i> feedstock: An experiment based technoâ€economic analysis. Biofuels, Bioproducts and Biorefining, 2016, 10, 833-847.	3.7	3