
Yukio Kimata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2846294/publications.pdf Version: 2024-02-01

Υπκίο Κιμάτα

#	Article	IF	CITATIONS
1	Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides. Bioscience, Biotechnology and Biochemistry, 2022, , .	1.3	0
2	Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration. Microbial Cell, 2021, 8, 77-86.	3.2	2
3	Induction and Aggravation of the Endoplasmic-Reticulum Stress by Membrane-Lipid Metabolic Intermediate Phosphatidyl-N-Monomethylethanolamine. Frontiers in Cell and Developmental Biology, 2021, 9, 743018.	3.7	11
4	The unfolded protein response alongside the diauxic shift of yeast cells and its involvement in mitochondria enlargement. Scientific Reports, 2019, 9, 12780.	3.3	22
5	Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR. Bioscience, Biotechnology and Biochemistry, 2019, 83, 824-828.	1.3	10
6	Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants. Bioscience, Biotechnology and Biochemistry, 2019, 83, 326-329.	1.3	8
7	4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	2.3	22
8	Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2018, 102, 2279-2288.	3.6	31
9	The unfolded protein response of yeast <i>Saccharomyces cerevisiae</i> and other organisms. Plant Morphology, 2018, 30, 15-24.	0.1	4
10	A chimeric mutant analysis in yeast cells suggests BiP independent regulation of the mammalian endoplasmic reticulum-stress sensor IRE1α. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1527-1530.	1.3	2
11	Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae. Frontiers in Microbiology, 2017, 8, 1192.	3.5	31
12	Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain. Journal of Cell Science, 2015, 128, 1762-72.	2.0	15
13	Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2014, 78, 1389-1391.	1.3	29
14	Zinc Depletion Activates the Endoplasmic Reticulum-Stress Sensor Ire1 <i>via</i> Pleiotropic Mechanisms. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1337-1339.	1.3	20
15	<scp>B</scp> i <scp>P</scp> â€bound and nonclustered mode of <scp>I</scp> re1 evokes a weak but sustained unfolded protein response. Genes To Cells, 2013, 18, 288-301.	1.2	28
16	Experimental Approaches for Elucidation of Stress-Sensing Mechanisms of the IRE1 Family Proteins. Methods in Enzymology, 2011, 490, 195-216.	1.0	6
17	Translational Pausing Ensures Membrane Targeting and Cytoplasmic Splicing of <i>XBP1u</i> mRNA. Science, 2011, 331, 586-589.	12.6	315
18	Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Molecular Biology of the Cell, 2011, 22, 3520-3532.	2.1	225

Υυκιό Κιμάτα

#	Article	IF	CITATIONS
19	Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cells. Current Opinion in Cell Biology, 2011, 23, 135-142.	5.4	181
20	A Novel ER J-protein DNAJB12 Accelerates ER-associated Degradation of Membrane Proteins Including CFTR. Cell Structure and Function, 2010, 35, 107-116.	1.1	57
21	Activation of mammalian IRE1α upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins. Experimental Cell Research, 2009, 315, 2496-2504.	2.6	148
22	Cotranslational Targeting of XBP1 Protein to the Membrane Promotes Cytoplasmic Splicing of Its Own mRNA. Molecular Cell, 2009, 34, 191-200.	9.7	151
23	Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1. Journal of Cell Science, 2007, 120, 1681-1688.	2.0	97
24	Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. Journal of Cell Biology, 2007, 179, 75-86.	5.2	279
25	Transgenic Mice Expressing a Fully Nontoxic Diphtheria Toxin Mutant, not CRM197 Mutant, Acquire Immune Tolerance against Diphtheria Toxin. Journal of Biochemistry, 2007, 142, 105-112.	1.7	17
26	Saccharomyces cerevisiae Rot1p Is an ER-Localized Membrane Protein That May Function with BiP/Kar2p in Protein Folding. Journal of Biochemistry, 2006, 139, 597-605.	1.7	23
27	Causal Links Between Protein Folding in the ER and Events Along the Secretory Pathway. Autophagy, 2006, 2, 323-324.	9.1	3
28	Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins. Genes To Cells, 2005, 11, 59-69.	1.2	126
29	A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. Journal of Cell Biology, 2004, 167, 445-456.	5.2	236
30	JPDI, a Novel Endoplasmic Reticulum-resident Protein Containing Both a BiP-interacting J-domain and Thioredoxin-like Motifs. Journal of Biological Chemistry, 2003, 278, 2669-2676.	3.4	89
31	Genetic Evidence for a Role of BiP/Kar2 That Regulates Ire1 in Response to Accumulation of Unfolded Proteins. Molecular Biology of the Cell, 2003, 14, 2559-2569.	2.1	188
32	Impairment of the DNA Binding Activity of the TATA-binding Protein Renders the Transcriptional Function of Rvb2p/Tih2p, the Yeast RuvB-like Protein, Essential for Cell Growth. Journal of Biological Chemistry, 2003, 278, 14647-14656.	3.4	33
33	Identification of a Novel Non-structural Maintenance of Chromosomes (SMC) Component of the SMC5-SMC6 Complex Involved in DNA Repair. Journal of Biological Chemistry, 2002, 277, 21585-21591.	3.4	90
34	Isolation and Characterization of a Putative Transducer of Endoplasmic Reticulum Stress in Oryza sativa. Plant and Cell Physiology, 2002, 43, 532-539.	3.1	65
35	Diphtheria toxin receptor–mediated conditional and targeted cell ablation in transgenic mice. Nature Biotechnology, 2001, 19, 746-750.	17.5	428
36	Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nature Cell Biology, 2001, 3, 158-164.	10.3	266

Υυκιό Κιμάτα

#	Article	IF	CITATIONS
37	Molecular Characterization of Two Arabidopsis Ire1 Homologs, Endoplasmic Reticulum-Located Transmembrane Protein Kinases. Plant Physiology, 2001, 127, 949-962.	4.8	213
38	Molecular Characterization of Two Arabidopsis Ire1 Homologs, Endoplasmic Reticulum-Located Transmembrane Protein Kinases. Plant Physiology, 2001, 127, 949-962.	4.8	27
39	The Saccharomyces cerevisiae RuvB-like Protein, Tih2p, Is Required for Cell Cycle Progression and RNA Polymerase II-directed Transcription. Journal of Biological Chemistry, 2000, 275, 22409-22417.	3.4	47
40	Elongation Factor 2 in the Liver and Skeletal Muscle of Mice is Decreased by Starvation. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2482-2485.	1.3	9
41	Impaired Proteasome Function Rescues Thermosensitivity of Yeast Cells Lacking the Coatomer Subunit ε-COP. Journal of Biological Chemistry, 2000, 275, 10655-10660.	3.4	12
42	Sfb2p, a Yeast Protein Related to Sec24p, Can Function as a Constituent of COPII Coats Required for Vesicle Budding from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 17900-17908.	3.4	23
43	Dissociation of Kar2p/BiP from an ER Sensory Molecule, Ire1p, Triggers the Unfolded Protein Response in Yeast. Biochemical and Biophysical Research Communications, 2000, 279, 445-450.	2.1	263
44	Identification of a novel mammalian endoplasmic reticulum-resident KDEL protein using an EST database motif search. Gene, 2000, 261, 321-327.	2.2	11
45	Mutation of the Yeast .EPSILONCOP Gene ANU2 Causes Abnormal Nuclear Morphology and Defects in Intracellular Vesicular Transport Cell Structure and Function, 1999, 24, 197-208.	1.1	18
46	[31] S147P green fluorescent protein: A less thermosensitive green fluorescent protein variant. Methods in Enzymology, 1999, 302, 373-378.	1.0	3
47	Loss of Hsp70-Hsp40 Chaperone Activity Causes Abnormal Nuclear Distribution and Aberrant Microtubule Formation in M-phase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 29727-29737.	3.4	47
48	A Novel Mutation Which Enhances the Fluorescence of Green Fluorescent Protein at High Temperatures. Biochemical and Biophysical Research Communications, 1997, 232, 69-73.	2.1	82
49	Thermosensitivity of Green Fluorescent Protein Fluorescence Utilized to Reveal Novel Nuclear-Like Compartments in a Mutant Nucleoporin NSP11. Journal of Biochemistry, 1995, 118, 13-17.	1.7	91