Cyril Seillet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2845993/publications.pdf

Version: 2024-02-01

44 4,112 papers citations

citations

201658

276858 41 g-index

48 all docs 48 docs citations 48 times ranked

27

h-index

6872 citing authors

#	Article	IF	CITATIONS
1	Innate lymphoid cells and cancer. Nature Immunology, 2022, 23, 371-379.	14.5	75
2	A protocol to isolate bone marrow innate lymphoid cells for alymphoid mouse reconstitution. STAR Protocols, 2022, 3, 101534.	1.2	0
3	Natural killers or ILC1s? That is the question. Current Opinion in Immunology, 2021, 68, 48-53.	5.5	45
4	Neuroimmune Interactions and Rhythmic Regulation of Innate Lymphoid Cells. Frontiers in Neuroscience, 2021, 15, 657081.	2.8	8
5	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	14.5	97
6	Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9044.	4.1	7
7	The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nature Immunology, 2020, 21, 168-177.	14.5	133
8	Tissue-resident lymphocytes: weaponized sentinels at barrier surfaces. F1000Research, 2020, 9, 691.	1.6	8
9	Constitutive overexpression of TNF in BPSM1 mice causes iBALT and bone marrow nodular lymphocytic hyperplasia. Immunology and Cell Biology, 2019, 97, 29-38.	2.3	2
10	Sensing of physiological regulators by innate lymphoid cells. Cellular and Molecular Immunology, 2019, 16, 442-451.	10.5	14
11	Assessment of Gene Function of Mouse Innate Lymphoid Cells for In Vivo Analysis Using Retroviral Transduction. Methods in Molecular Biology, 2019, 1953, 231-240.	0.9	1
12	Physiological Regulation of Innate Lymphoid Cells. Frontiers in Immunology, 2019, 10, 405.	4.8	21
13	NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Annals of the Rheumatic Diseases, 2019, 78, 342-349.	0.9	21
14	Innate Lymphoid Cells in Colorectal Cancers: A Double-Edged Sword. Frontiers in Immunology, 2019, 10, 3080.	4.8	14
15	Androgen signaling negatively controls group 2 innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 1581-1592.	8.5	204
16	Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Frontiers in Immunology, 2017, 8, 108.	4.8	116
17	Shaping Innate Lymphoid Cell Diversity. Frontiers in Immunology, 2017, 8, 1569.	4.8	18
18	Differentiation and diversity of subsets in group 1 innate lymphoid cells. International Immunology, 2016, 28, 3-11.	4.0	12

#	Article	IF	CITATIONS
19	Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells. Frontiers in Immunology, 2016, 7, 426.	4.8	75
20	Deciphering the Innate Lymphoid Cell Transcriptional Program. Cell Reports, 2016, 17, 436-447.	6.4	131
21	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	14.5	289
22	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	12.6	721
23	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	3.6	88
24	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	14.3	101
25	Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nature Immunology, 2016, 17, 179-186.	14.5	211
26	Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. Current Topics in Microbiology and Immunology, 2015, 395, 37-61.	1.1	63
27	X-Chromosome Complement and Estrogen Receptor Signaling Independently Contribute to the Enhanced TLR7-Mediated IFN-α Production of Plasmacytoid Dendritic Cells from Women. Journal of Immunology, 2014, 193, 5444-5452.	0.8	176
28	NK cell development in bone marrow and liver: site matters. Genes and Immunity, 2014, 15, 584-587.	4.1	15
29	Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine, 2014, 70, 1-10.	3.2	27
30	Differential Requirement for Nfil3 during NK Cell Development. Journal of Immunology, 2014, 192, 2667-2676.	0.8	111
31	130. Cytokine, 2014, 70, 59.	3.2	0
32	Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539.	12.8	156
33	Nfil3 is required for the development of all innate lymphoid cell subsets. Journal of Experimental Medicine, 2014, 211, 1733-1740.	8.5	206
34	Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood, 2014, 123, 3420-3428.	1.4	23
35	Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks. Journal of Experimental Medicine, 2013, 210, 2967-2980.	8.5	109
36	Terminal Differentiation of Dendritic Cells. Advances in Immunology, 2013, 120, 185-210.	2.2	17

#	Article	IF	CITATIONS
37	TCF-1 Controls ILC2 and NKp46+RORγt+ Innate Lymphocyte Differentiation and Protection in Intestinal Inflammation. Journal of Immunology, 2013, 191, 4383-4391.	0.8	122
38	Estradiol Promotes Functional Responses in Inflammatory and Steady-State Dendritic Cells through Differential Requirement for Activation Function-1 of Estrogen Receptor $\hat{I}\pm$. Journal of Immunology, 2013, 190, 5459-5470.	0.8	76
39	CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood, 2013, 121, 1574-1583.	1.4	95
40	Diversity, function, and transcriptional regulation of gut innate lymphocytes. Frontiers in Immunology, 2013, 4, 22.	4.8	30
41	The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor \hat{l}_{\pm} signaling. Blood, 2012, 119, 454-464.	1.4	268
42	Estrogen receptor \hat{l}_{\pm} , but not \hat{l}_{2} , is required for optimal dendritic cell differentiation and of CD40-induced cytokine production. Journal of Immunology, 2008, 180, 7047.3-7047.	0.8	2
43	Estrogen Receptor \hat{l}_{\pm} , but Not \hat{l}^2 , Is Required for Optimal Dendritic Cell Differentiation and CD40-Induced Cytokine Production. Journal of Immunology, 2008, 180, 3661-3669.	0.8	93
44	Natural killer cells recruited into lymph nodes inhibit alloreactive T-cell activation through perforin-mediated killing of donor allogeneic dendritic cells. Blood, 2008, 112, 661-671.	1.4	104