Yuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844730/publications.pdf Version: 2024-02-01

YHAN WANG

#	Article	lF	CITATIONS
1	Mitochondrial regulation in spermatogenesis. Reproduction, 2022, 163, R55-R69.	2.6	13
2	Xenotransplantation of Human Spermatogonia Into Various Mouse Recipient Models. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	4
3	CAP1, a target of miRâ€144/451, negatively regulates erythroid differentiation and enucleation. Journal of Cellular and Molecular Medicine, 2021, 25, 2377-2389.	3.6	4
4	Male germ cell derivation from PSCs. , 2021, , 133-165.		0
5	Nanoparticle-Aided Nanoreactor for Nanoproteomics. Analytical Chemistry, 2021, 93, 10568-10576.	6.5	10
6	ZDHHC19 Is Dispensable for Spermatogenesis, but Is Essential for Sperm Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 8894.	4.1	7
7	MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 13507.	4.1	5
8	Social Technology: An Interdisciplinary Approach to Improving Care for Older Adults. Frontiers in Public Health, 2021, 9, 729149.	2.7	7
9	MFN2 Plays a Distinct Role from MFN1 in Regulating Spermatogonial Differentiation. Stem Cell Reports, 2020, 14, 803-817.	4.8	19
10	A bioenergetic shift is required for spermatogonial differentiation. Cell Discovery, 2020, 6, 56.	6.7	21
11	BRG1 Is Dispensable for Sertoli Cell Development and Functions in Mice. International Journal of Molecular Sciences, 2020, 21, 4358.	4.1	4
12	Stress-Induced Metabolic Disorder in Peripheral CD4+ T Cells Leads to Anxiety-like Behavior. Cell, 2019, 179, 864-879.e19.	28.9	180
13	InÂVitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 509-523.	4.8	57
14	NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB Journal, 2017, 31, 4959-4970.	0.5	41
15	Interplay of transcription factors and microRNAs during embryonic hematopoiesis. Science China Life Sciences, 2017, 60, 168-177.	4.9	7
16	<scp>GASZ</scp> and mitofusinâ€mediated mitochondrial functions are crucial for spermatogenesis. EMBO Reports, 2016, 17, 220-234.	4.5	50
17	CD71high population represents primitive erythroblasts derived from mouse embryonic stem cells. Stem Cell Research, 2015, 14, 30-38.	0.7	12
18	A Novel Role of CDX1 in Embryonic Epicardial Development. PLoS ONE, 2014, 9, e103271.	2.5	8

Yuan Wang

#	Article	IF	CITATIONS
19	GPR126 Protein Regulates Developmental and Pathological Angiogenesis through Modulation of VEGFR2 Receptor Signaling. Journal of Biological Chemistry, 2014, 289, 34871-34885.	3.4	50
20	Transcriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells. Stem Cell Reports, 2014, 3, 460-474.	4.8	93
21	GASZ promotes germ cell derivation from embryonic stem cells. Stem Cell Research, 2013, 11, 845-860.	0.7	22
22	Role of Nuclear Receptor Coactivator 3 (Ncoa3) in Pluripotency Maintenance. Journal of Biological Chemistry, 2012, 287, 38295-38304.	3.4	43
23	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
24	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
25	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761.	7.1	62
26	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
27	Cdx4 Is Dispensable for Murine Hematopoiesis and MLL-AF9 Mediated Leukemogenesis Blood, 2008, 112, 1404-1404.	1.4	0
28	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 197-208.	3.8	27
29	Retinoic Acid Blockade Increases Primitive Blood Cell Formation in cdx4 Mutant Zebrafish Embryos, Murine Yolk Sac Explants and Differentiated Embryonic Stem Cells Blood, 2007, 110, 201-201.	1.4	32
30	BMP Signaling Via the Cdx-Hox Pathway Allocates Mesoderm to Hematopoietic vs Cardiac Fates Blood, 2006, 108, 4183-4183.	1.4	0
31	Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19081-19086.	7.1	193
32	Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1593, 115-120.	4.1	137
33	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
34	Three mutations in v-Rel render it resistant to cleavage by cell-death protease caspase-3. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 25-36.	2.4	19
35	LIM domain protein Trip6 has a conserved nuclear export signal, nuclear targeting sequences, and multiple transactivation domains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1538, 260-272.	4.1	71
36	Characterization of mouse Trip6: a putative intracellular signaling protein. Gene, 1999, 234, 403-409.	2.2	37