Yuan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844730/publications.pdf

Version: 2024-02-01

36	1,558	19	33
papers	citations	h-index	g-index
26	26	26	2225
36	36	36	2335
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
2	Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19081-19086.	7.1	193
3	Stress-Induced Metabolic Disorder in Peripheral CD4+ T Cells Leads to Anxiety-like Behavior. Cell, 2019, 179, 864-879.e19.	28.9	180
4	Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1593, 115-120.	4.1	137
5	Transcriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells. Stem Cell Reports, 2014, 3, 460-474.	4.8	93
6	LIM domain protein Trip6 has a conserved nuclear export signal, nuclear targeting sequences, and multiple transactivation domains. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1538, 260-272.	4.1	71
7	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761.	7.1	62
8	InÂVitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 509-523.	4.8	57
9	GPR126 Protein Regulates Developmental and Pathological Angiogenesis through Modulation of VEGFR2 Receptor Signaling. Journal of Biological Chemistry, 2014, 289, 34871-34885.	3.4	50
10	<scp>GASZ</scp> and mitofusinâ€mediated mitochondrial functions are crucial for spermatogenesis. EMBO Reports, 2016, 17, 220-234.	4.5	50
11	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
12	Role of Nuclear Receptor Coactivator 3 (Ncoa3) in Pluripotency Maintenance. Journal of Biological Chemistry, 2012, 287, 38295-38304.	3.4	43
13	NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB Journal, 2017, 31, 4959-4970.	0.5	41
14	Characterization of mouse Trip6: a putative intracellular signaling protein. Gene, 1999, 234, 403-409.	2.2	37
15	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
16	Retinoic Acid Blockade Increases Primitive Blood Cell Formation in cdx4 Mutant Zebrafish Embryos, Murine Yolk Sac Explants and Differentiated Embryonic Stem Cells Blood, 2007, 110, 201-201.	1.4	32
17	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 197-208.	3.8	27
18	GASZ promotes germ cell derivation from embryonic stem cells. Stem Cell Research, 2013, 11, 845-860.	0.7	22

#	Article	IF	CITATIONS
19	A bioenergetic shift is required for spermatogonial differentiation. Cell Discovery, 2020, 6, 56.	6.7	21
20	Three mutations in v-Rel render it resistant to cleavage by cell-death protease caspase-3. Biochimica Et Biophysica Acta - General Subjects, 2001, 1526, 25-36.	2.4	19
21	MFN2 Plays a Distinct Role from MFN1 in Regulating Spermatogonial Differentiation. Stem Cell Reports, 2020, 14, 803-817.	4.8	19
22	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
23	Mitochondrial regulation in spermatogenesis. Reproduction, 2022, 163, R55-R69.	2.6	13
24	CD71high population represents primitive erythroblasts derived from mouse embryonic stem cells. Stem Cell Research, 2015, 14, 30-38.	0.7	12
25	Nanoparticle-Aided Nanoreactor for Nanoproteomics. Analytical Chemistry, 2021, 93, 10568-10576.	6.5	10
26	A Novel Role of CDX1 in Embryonic Epicardial Development. PLoS ONE, 2014, 9, e103271.	2.5	8
27	Interplay of transcription factors and microRNAs during embryonic hematopoiesis. Science China Life Sciences, 2017, 60, 168-177.	4.9	7
28	ZDHHC19 Is Dispensable for Spermatogenesis, but Is Essential for Sperm Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 8894.	4.1	7
29	Social Technology: An Interdisciplinary Approach to Improving Care for Older Adults. Frontiers in Public Health, 2021, 9, 729149.	2.7	7
30	MFN1 and MFN2 Are Dispensable for Sperm Development and Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 13507.	4.1	5
31	BRG1 Is Dispensable for Sertoli Cell Development and Functions in Mice. International Journal of Molecular Sciences, 2020, 21, 4358.	4.1	4
32	CAP1, a target of miRâ€144/451, negatively regulates erythroid differentiation and enucleation. Journal of Cellular and Molecular Medicine, 2021, 25, 2377-2389.	3.6	4
33	Xenotransplantation of Human Spermatogonia Into Various Mouse Recipient Models. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	4
34	Male germ cell derivation from PSCs. , 2021, , 133-165.		0
35	BMP Signaling Via the Cdx-Hox Pathway Allocates Mesoderm to Hematopoietic vs Cardiac Fates Blood, 2006, 108, 4183-4183.	1.4	0
36	Cdx4 Is Dispensable for Murine Hematopoiesis and MLL-AF9 Mediated Leukemogenesis Blood, 2008, 112, 1404-1404.	1.4	0