
Stefano Rivella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Management of nonâ€ŧransfusionâ€dependent βâ€ŧhalassemia (<scp>NTDT</scp>): The next 5 years. Amer Journal of Hematology, 2021, 96, E57-E59.	ican 2.0	11
2	Revisiting the nonâ€transfusionâ€dependent (NTDT) vs. transfusionâ€dependent (TDT) thalassemia classification 10 years later. American Journal of Hematology, 2021, 96, E54-E56.	2.0	28
3	The Role of Iron in Benign and Malignant Hematopoiesis. Antioxidants and Redox Signaling, 2021, 35, 415-432.	2.5	15
4	CYP450 Mediates Reactive Oxygen Species Production in a Mouse Model of β-Thalassemia through an Increase in 20-HETE Activity. International Journal of Molecular Sciences, 2021, 22, 1106.	1.8	6
5	Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies. Molecular Therapy, 2021, 29, 1625-1638.	3.7	10
6	Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Communications Biology, 2021, 4, 517.	2.0	8
7	Inclusion of a short hairpin RNA targeting <i>BCL11A</i> into a β-globin expressing vector allows concurrent synthesis of curative adult and fetal hemoglobin. Haematologica, 2021, 106, 2740-2745.	1.7	5
8	The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. ELife, 2021, 10, .	2.8	18
9	Increased CFTR expression and function from an optimized lentiviral vector for cystic fibrosis gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 21, 94-106.	1.8	8
10	The EHA Research Roadmap: Anemias. HemaSphere, 2021, 5, e607.	1.2	7
11	2'-O-methoxyethyl splice-switching oligos correct splicing from IVS2-745 β-thalassemia patient cells restoring HbA production and chain rebalance. Haematologica, 2021, 106, 1433-1442.	1.7	2
12	DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Science Translational Medicine, 2021, 13, eabj1008.	5.8	90
13	Rescue of Murine IL-7 Receptor Deficiency with Human IL-7 Receptor Gene Therapy. Blood, 2021, 138, 3131-3131.	0.6	2
14	Obligate N-Terminal but Not C-Terminal Monoferric Transferrin Ameliorates Anemia in Î ² -Thalassemic Mice. Blood, 2021, 138, 937-937.	0.6	1
15	Improved Gene Therapy for Metachromatic Leukodystrophy. Blood, 2021, 138, 3979-3979.	0.6	0
16	Dietary Iron Increases Expression of Liver Hepcidin Relative to BMP6 By a Mechanism Involving Transferrin Receptor 2 and Specificity of Transferrin Lobe Iron Occupancy. Blood, 2021, 138, 3067-3067.	0.6	0
17	<i>Tfr2</i> Genetic Deletion Makes Transfusion-Independent a Murine Model of Transfusion-Dependent β-Thalassemia. Blood, 2021, 138, 575-575.	0.6	1
18	Tmprss6-ASO as a tool for the treatment of Polycythemia Vera mice. PLoS ONE, 2021, 16, e0251995.	1.1	12

#	Article	IF	CITATIONS
19	Heparanase Level and Procoagulant Activity Are Increased in Thalassemia and Attenuated by Janus Kinase 2 Inhibition. American Journal of Pathology, 2020, 190, 2146-2154.	1.9	2
20	Carbonyl iron and iron dextran therapies cause adverse effects on bone health in juveniles with chronic kidney disease. Kidney International, 2020, 98, 1210-1224.	2.6	9
21	Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood, 2020, 136, 1968-1979.	0.6	33
22	Mitochondria Biogenesis Modulates Iron–Sulfur Cluster Synthesis to Increase Cellular Iron Uptake. DNA and Cell Biology, 2020, 39, 756-765.	0.9	11
23	Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult β-thalassemia major. Haematologica, 2020, 105, 1835-1844.	1.7	37
24	Elevated P21 (CDKN1a) Mediates Apoptosis of Beta-Thalassemic Erythroid Cells in Mice but Its Ablation Doesn't Improve Erythroid Maturation. Blood, 2020, 136, 19-19.	0.6	1
25	Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood, 2019, 134, 1373-1384.	0.6	36
26	Gene therapy of hemoglobinopathies: progress and future challenges. Human Molecular Genetics, 2019, 28, R24-R30.	1.4	51
27	Development and characterization of cellular biosensors for HTS of erythroid differentiation inducers targeting the transcriptional activity of γ-globin and β-globin gene promoters. Analytical and Bioanalytical Chemistry, 2019, 411, 7669-7680.	1.9	2
28	Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Molecular Diagnosis and Therapy, 2019, 23, 173-186.	1.6	23
29	Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of β-thalassemia. Blood, 2019, 134, 568-572.	0.6	56
30	Genetic loss of Tmprss6 alters terminal erythroid differentiation in a mouse model of β-thalassemia intermedia. Haematologica, 2019, 104, e442-e446.	1.7	6
31	Interleukin-6 Contributes to the Development of Anemia in Juvenile CKD. Kidney International Reports, 2019, 4, 470-483.	0.4	36
32	Cranberry A-type proanthocyanidins selectively target acute myeloid leukemia cells. Blood Advances, 2019, 3, 3261-3265.	2.5	3
33	EHA Research Roadmap on Hemoglobinopathies and Thalassemia: An Update. HemaSphere, 2019, 3, e208.	1.2	13
34	Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood, 2019, 133, 51-58.	0.6	68
35	Erythroferrone Regulates Bone Remodeling in β-Thalassemia. Blood, 2019, 134, 2-2.	0.6	5
36	New potential players in hepcidin regulation. Haematologica, 2019, 104, 1691-1693.	1.7	4

3

#	Article	IF	CITATIONS
37	2'-O-Methoxyethyl Splice-Switching Oligos to Reverse Splicing from IVS2-745 β-Thalassemia Patient Cells: A Foundation for Potential Therapies. Blood, 2019, 134, 2244-2244.	0.6	0
38	PP-14, a Novel Structurally-Enhanced Antisickling Allosteric Hemoglobin Effector, Increases Oxygen Affinity and Disrupts Hemoglobin S Polymer Formation. Blood, 2019, 134, 73-73.	0.6	1
39	Preclinical Evaluation of ALS20, a New and Improved Lentiviral Vector for Beta-Globinopathies. Blood, 2019, 134, 2242-2242.	0.6	1
40	Elucidating the Role of IL6 in Stress Erythropoiesis and in the Development of Anemia Under Inflammatory Conditions. Blood, 2019, 134, 940-940.	0.6	0
41	Emerging Therapies. Hematology/Oncology Clinics of North America, 2018, 32, 343-352.	0.9	5
42	Ineffective Erythropoiesis: Anemia and Iron Overload. Hematology/Oncology Clinics of North America, 2018, 32, 213-221.	0.9	54
43	Hepcidin agonists as therapeutic tools. Blood, 2018, 131, 1790-1794.	0.6	91
44	Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 470-480.	2.5	90
45	Efficacy and safety of ruxolitinib in regularly transfused patients with thalassemia: results from a phase 2a study. Blood, 2018, 131, 263-265.	0.6	45
46	What can we learn from ineffective erythropoiesis in thalassemia?. Blood Reviews, 2018, 32, 130-143.	2.8	43
47	Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood, 2018, 131, 899-910.	0.6	230
48	Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major. Haematologica, 2018, 103, e46-e49.	1.7	29
49	Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB Journal, 2018, 32, 3752-3764.	0.2	85
50	Lack of GDF11 Does Not Ameliorate Erythropoiesis in β-Thalassemia and Does Not Prevent the Activity of the Trap-Ligand RAP-536. Blood, 2018, 132, 165-165.	0.6	1
51	Improved Lentiviral Vectors for the Cure of Hemoglobinopathies. Blood, 2018, 132, 3477-3477.	0.6	Ο
52	An Orchestrated Balance between Mitochondria Biogenesis, Iron-Sulfur Cluster Synthesis and Cellular Iron Acquisition. Blood, 2018, 132, 1048-1048.	0.6	1
53	AMPK Regulates the Expression of the Fe-S Cluster Assembly Enzyme (ISCU) and ALAS2, Modulating Cellular Iron Metabolism and Increasing Hemoglobin Synthesis. Blood, 2018, 132, 851-851.	0.6	1
54	Correcting Non-Transfusion Dependent β-Thalassemia by Utilizing a Combined Therapy that Modulates EPO Activity by Limiting Erythroid Cellular Iron Intake. Blood, 2018, 132, 164-164.	0.6	0

#	Article	IF	CITATIONS
55	Targeting iron metabolism in drug discovery and delivery. Nature Reviews Drug Discovery, 2017, 16, 400-423.	21.5	258
56	A Red Carpet for Iron Metabolism. Cell, 2017, 168, 344-361.	13.5	847
57	Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice. Blood, 2017, 129, 1514-1526.	0.6	52
58	Recommendations regarding splenectomy in hereditary hemolytic anemias. Haematologica, 2017, 102, 1304-1313.	1.7	138
59	Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nature Communications, 2017, 8, 403.	5.8	45
60	Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood, 2017, 130, 1144-1155.	0.6	31
61	Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia. Advances in Experimental Medicine and Biology, 2017, 1013, 155-176.	0.8	13
62	Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt. Nature Communications, 2016, 7, 13817.	5.8	54
63	Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F877-F889.	1.3	40
64	A validated cellular biobank for \hat{l}^2 -thalassemia. Journal of Translational Medicine, 2016, 14, 255.	1.8	25
65	Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica, 2016, 101, 297-308.	1.7	22
66	Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood, 2016, 128, 1139-1143.	0.6	69
67	Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood, 2016, 128, 265-276.	0.6	123
68	New strategies to target iron metabolism for the treatment of beta thalassemia. Annals of the New York Academy of Sciences, 2016, 1368, 162-168.	1.8	19
69	Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica, 2016, 101, e8-e11.	1.7	62
70	Polycythemia is associated with bone loss and reduced osteoblast activity in mice. Osteoporosis International, 2016, 27, 1559-1568.	1.3	22
71	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	1.7	67
72	Potential Therapeutic Applications of Jak2 Inhibitors and Hif2a-ASO for the Treatment of β-Thalassemia Intermedia and Major. Blood, 2016, 128, 1012-1012.	0.6	3

#	Article	IF	CITATIONS
73	Developing a Galnac-Conjugated TMPRSS6 Antisense Therapy for the Treatment of β-Thalassemia. Blood, 2016, 128, 1013-1013.	0.6	9
74	A Novel Dual Monoclonal Sandwich ELISA for Human Erythroferrone. Blood, 2016, 128, 1272-1272.	0.6	2
75	Genetic Investigation of the Role of GDF11 in the Treatment of β-Thalassemia and MDS. Blood, 2016, 128, 2439-2439.	0.6	3
76	Administration of Minihepcidins to Animals Affected By β-Thalassemia Major Reduces Anemia and Splenomegaly. Blood, 2016, 128, 259-259.	0.6	1
77	Adult Hemoglobin Production, Chain Rebalance, and Splice Correction in IVS2-745 Beta-Thalassemia Patient Cells Using 2'-O-Methoxyethyl Splice-Switching Oligos. Blood, 2016, 128, 1014-1014.	0.6	0
78	A-type proanthocyanidins selectively target acute myeloid leukemia cells in vitro and in vivo. Planta Medica, 2016, 81, S1-S381.	0.7	0
79	Ex Vivo Gene Therapy Approach By Targt Technology for the Treatment of β-Thalassemia Intermedia. Blood, 2016, 128, 2467-2467.	0.6	Ο
80	Recent trends in the gene therapy of β-thalassemia. Journal of Blood Medicine, 2015, 6, 69.	0.7	76
81	Generation and Characterization of a Transgenic Mouse Carrying a Functional Humanβ-Globin Gene with the IVSI-6 Thalassemia Mutation. BioMed Research International, 2015, 2015, 1-20.	0.9	2
82	HMGB1 Mediates Anemia of Inflammation in Murine Sepsis Survivors. Molecular Medicine, 2015, 21, 951-958.	1.9	45
83	Gene Therapy for Hemoglobinopathies. , 2015, , 191-206.		1
84	Intestine-specific Disruption of Hypoxia-inducible Factor (HIF)-2α Improves Anemia in Sickle Cell Disease. Journal of Biological Chemistry, 2015, 290, 23523-23527.	1.6	35
85	Â-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica, 2015, 100, 418-430.	1.7	91
86	Alternative splicing of EKLF/KLF1 in murine primary erythroid tissues. Experimental Hematology, 2015, 43, 65-70.	0.2	3
87	Cancer cells with irons in the fire. Free Radical Biology and Medicine, 2015, 79, 337-342.	1.3	79
88	Altered erythropoiesis and iron metabolism in carriers of thalassemia. European Journal of Haematology, 2015, 94, 511-518.	1.1	21
89	Targeting TMPRSS6 Using Antisense Technology for the Treatment of Beta-Thalassemia. Blood, 2015, 126, 753-753.	0.6	3
90	Lack of Beta-1 Integrin Limits Stress Erythropoiesis and Splenomegaly in Beta-Thalassemia. Blood, 2015, 126, 2196-2196.	0.6	0

#	Article	IF	CITATIONS
91	A Double Knock out of Hepcidin and IL6 Demonstrates Independent Roles of the Two Genes in Anemia of Inflammation. Blood, 2015, 126, 2221-2221.	0.6	0
92	Down-Regulation of TfR1 Increases Erythroid Precursor Enucleation and Hepatocyte Hepcidin Expression in ß-Thalassemic Mice. Blood, 2015, 126, 754-754.	0.6	1
93	FGF-23 Is a Negative Regulator of Prenatal and Postnatal Erythropoiesis. Journal of Biological Chemistry, 2014, 289, 9795-9810.	1.6	114
94	Disorders of Iron Metabolism: Iron Deficiency and Iron Overload and Anemia of Chronic Diseases. , 2014, , 1471-1487.		4
95	Iron age: novel targets for iron overload. Hematology American Society of Hematology Education Program, 2014, 2014, 216-221.	0.9	10
96	Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells?. Antioxidants and Redox Signaling, 2014, 20, 1917-1924.	2.5	154
97	Identification and Characterization of Small Molecules That Inhibit Nonsense-Mediated RNA Decay and Suppress Nonsense p53 Mutations. Cancer Research, 2014, 74, 3104-3113.	0.4	110
98	FOXO3â€nTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. American Journal of Hematology, 2014, 89, 954-963.	2.0	73
99	Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping. Cell, 2014, 158, 849-860.	13.5	370
100	β-Thalassemia and Polycythemia vera: Targeting chronic stress erythropoiesis. International Journal of Biochemistry and Cell Biology, 2014, 51, 89-92.	1.2	12
101	Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood, 2014, 123, 1137-1145.	0.6	83
102	Modulators of Erythropoiesis. Hematology/Oncology Clinics of North America, 2014, 28, 375-386.	0.9	24
103	Identification of erythroferrone as an erythroid regulator of iron metabolism. Nature Genetics, 2014, 46, 678-684.	9.4	890
104	Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood, 2014, 123, 3864-3872.	0.6	114
105	Enucleate or replicate? Ask the cytoskeleton. Blood, 2014, 123, 601-602.	0.6	1
106	Use of Minihepcidins As a "Medical Phlebotomy―in the Treatment of Polycythemia Vera. Blood, 2014, 124, 3231-3231.	0.6	1
107	Combination of Tmprss6-ASO and the Iron Chelator Deferiprone Improves Erythropoiesis and Reduces Iron Overload in a Mouse Model of Beta-Thalassemia. Blood, 2014, 124, 4024-4024.	0.6	1
108	Concurrent Treatment with Minhepcidin and Deferiprone Improves Anemia and Enhances Reduction of Spleen Iron in a Mouse Model of Non-Transfusion Dependent Thalassemia. Blood, 2014, 124, 748-748.	0.6	6

#	Article	IF	CITATIONS
109	Stress Erythropoiesis Is Associated with Changes in the Transcriptome of Central Macrophages. Blood, 2014, 124, 1404-1404.	0.6	6
110	Increased Hepcidin Expression in β-Thalassemic Mice Treated with Apo-Transferrin Is Associated with Increased Smad1/5/8 and Decreased Erk1/2 Pathway Activation. Blood, 2014, 124, 747-747.	0.6	0
111	Exogenous Apo-Transferrin Increases Monoferric Transferrin, Decreasing Cytosolic Iron Uptake and Heme and Globin Synthesis in β-Thalassemic Mice. Blood, 2014, 124, 4037-4037.	0.6	0
112	Beta-1 Integrin Controls Homing and Expansion of Erythroid Cells in Stress Erythropoiesis and ß-Thalassemia. Blood, 2014, 124, 2661-2661.	0.6	0
113	Comparing Strategies to Reactivate Fetal Globin Expression for the Treatment of Beta-Globinopathies. Blood, 2014, 124, 333-333.	0.6	0
114	Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4922-30.	3.3	81
115	Non-transfusion-dependent thalassemias. Haematologica, 2013, 98, 833-844.	1.7	231
116	Macrophages support pathological erythropoiesis in polycythemia vera and Î ² -thalassemia. Nature Medicine, 2013, 19, 437-445.	15.2	202
117	Gene therapy for hemoglobinopathies: progress and challenges. Translational Research, 2013, 161, 293-306.	2.2	40
118	Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia. Expert Review of Hematology, 2013, 6, 255-264.	1.0	15
119	The murine growth differentiation factor 15 is not essential for systemic iron homeostasis in phlebotomized mice. Haematologica, 2013, 98, 444-447.	1.7	95
120	Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. Journal of Clinical Investigation, 2013, 123, 1531-1541.	3.9	196
121	Isocitrate ameliorates anemia by suppressing the erythroid iron restriction response. Journal of Clinical Investigation, 2013, 123, 3614-3623.	3.9	38
122	Heme Oxygenase 1 Plays a Role In The Pathophysiology Of β-Thalassemia. Blood, 2013, 122, 3449-3449.	0.6	3
123	Treatment With Minihepcidin Peptide Improves Anemia and Iron Overload In a Mouse Model Of Thalassemia Intermedia. Blood, 2013, 122, 431-431.	0.6	9
124	A-Type Proanthocyanidins Prevent Engraftment Of Primary Acute Myelogenous Leukemia Cells In Mice and Exhibit Potentially Novel Anti-Leukemia Mechanisms. Blood, 2013, 122, 3962-3962.	0.6	0
125	Distinct Roles For Hepcidin and Interleukin 6 In The Recovery From Anemia Following Administration Of Heat-Killed Brucella Abortus. Blood, 2013, 122, 430-430.	0.6	0
126	Macrophages Regulate Stress Erythropoiesis Through Direct Cellular Interactions Associated With Integrin β1-Focal Adhesion Kinase Signaling. Blood, 2013, 122, 307-307.	0.6	0

#	Article	IF	CITATIONS
127	Myeloid Cell-Derived Hypoxia-Inducible Factor Attenuates Inflammation in Unilateral Ureteral Obstruction-Induced Kidney Injury. Journal of Immunology, 2012, 188, 5106-5115.	0.4	86
128	The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Reviews, 2012, 26, S12-S15.	2.8	109
129	<i>In Vivo</i> Gene Transfer Strategies to Achieve Partial Correction of von Willebrand Disease. Human Gene Therapy, 2012, 23, 576-588.	1.4	16
130	Do not super-excess me!. Blood, 2012, 119, 5064-5065.	0.6	4
131	A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction. Annals of Hematology, 2012, 91, 1201-1213.	0.8	21
132	Decreased hepcidin expression in murine \hat{l}^2 -thalassemia is associated with suppression of Bmp/Smad signaling. Blood, 2012, 119, 3187-3189.	0.6	27
133	Disorders of Red Cell Production and the Iron-Loading Anemias. , 2012, , 321-341.		1
134	ACE-536 Improves Ineffective Erythropoiesis, Anemia and Co-Morbidities in β-Thalassemia. Blood, 2012, 120, 248-248.	0.6	2
135	Metabolic Pathways Control Normal and Beta-Thalassemic Erythroid Cell Maturation. Blood, 2012, 120, 369-369.	0.6	1
136	Target TMPRSS6 Using Antisense Technology for the Treatment of Hereditary Hemochromatosis and β-Thalassemia. Blood, 2012, 120, 481-481.	0.6	1
137	Therapeutic Hemoglobin Levels after Gene Transfer in β-Thalassemia Mice and in Hematopoietic Cells of β-Thalassemia and Sickle Cells Disease Patients. PLoS ONE, 2012, 7, e32345.	1.1	78
138	Genetic Loss of Tmprss6 Increases Effective Erythropoiesis in a Mouse Model of β-Thalassemia. Blood, 2012, 120, 482-482.	0.6	0
139	A-Type Proanthocyanidins From Cranberries Target Acute Myelogenous Leukemia Stem Cells Blood, 2012, 120, 2986-2986.	0.6	Ο
140	Removal of Macrophages From the Erythroid Niche Impairs Stress Erythropoiesis but Improves Pathophysiology of Polycythemia Vera and Beta-Thalassemia. Blood, 2012, 120, 81-81.	0.6	0
141	Hematopoietic Progenitors and Erythropoietin Affect Osteoblast Function and Lead to Osteoporosis in a Thalassemia Mouse Model. Blood, 2012, 120, 3261-3261.	0.6	0
142	Prospects for a hepcidin mimic to treat β-thalassemia and hemochromatosis. Expert Review of Hematology, 2011, 4, 233-235.	1.0	11
143	β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood, 2011, 118, 4321-4330.	0.6	168
144	Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis. Blood, 2011, 117, 1379-1389.	0.6	42

#	Article	IF	CITATIONS
145	Macrophages Impair Erythroid Development in β-Thalassemia Intermedia. Blood, 2011, 118, 1035-1035.	0.6	1
146	Investigating the Role of Cytokines and Hepcidin in Anemia of Inflammation. Blood, 2011, 118, 1046-1046.	0.6	1
147	Potential Therapeutic Applications of Jak2 Inhibitors in Beta-Thalassemia and Sickle Cell Disease,. Blood, 2011, 118, 3187-3187.	0.6	3
148	Exogenous Apo-Transferrin Reduces Extramedullary and Increases Effectiveness of Erythropoiesis in a Mouse Model of Beta-Thalassemia Major. Blood, 2011, 118, 1095-1095.	0.6	1
149	The Human Ankyrin Insulator Supports Production of Therapeutic Levels of Adult Hemoglobin Following β-Clobin Gene Transfer in Hematopoietic Cells Derived From Thalassemic and Sickle Cell Patients. Blood, 2011, 118, 2055-2055.	0.6	6
150	The Regulation of Hepcidin in \hat{l}^2 -Thalassemia. Blood, 2011, 118, 901-901.	0.6	0
151	The Effects of B16-F10 Melanoma Tumors on Iron Biomarkers and Anemia of Inflammation In Vivo,. Blood, 2011, 118, 3165-3165.	0.6	Ο
152	Changes in Bone Microarchitecture and Biomechanical Properties in the th3 Thalassemia Mouse are Associated with Decreased Bone Turnover and Occur During the Period of Bone Accrual. Calcified Tissue International, 2010, 86, 484-494.	1.5	28
153	Analysis of alpha hemoglobin stabilizing protein overexpression in murine βâ€ŧhalassemia. American Journal of Hematology, 2010, 85, 820-822.	2.0	16
154	Hepcidin and Hfe in iron overload in βâ€ŧhalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 221-225.	1.8	21
155	Iron metabolism and ineffective erythropoiesis in βâ€ŧhalassemia mouse models. Annals of the New York Academy of Sciences, 2010, 1202, 24-30.	1.8	16
156	A preclinical approach for gene therapy of βâ€ŧhalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 134-140.	1.8	21
157	Crosstalk between Erythropoiesis and Iron Metabolism. Advances in Hematology, 2010, 2010, 1-2.	0.6	6
158	-Thalassemia: HiJAKing Ineffective Erythropoiesis and Iron Overload. Advances in Hematology, 2010, 2010, 1-7.	0.6	60
159	Anemia, Ineffective Erythropoiesis, and Hepcidin: Interacting Factors in Abnormal Iron Metabolism Leading to Iron Overload in β-Thalassemia. Hematology/Oncology Clinics of North America, 2010, 24, 1089-1107.	0.9	81
160	Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. Journal of Clinical Investigation, 2010, 120, 4466-4477.	3.9	202
161	Hepcidin as a Therapeutic Tool to Limit Iron Overload and Improve Anemia In β-Thalassemia. Blood, 2010, 116, 1009-1009.	0.6	2
162	The Role of Interleukin-6 and Bone-Marrow Derived Cell Production of Hepcidin In Anemia of Inflammation. Blood, 2010, 116, 167-167.	0.6	0

#	Article	IF	CITATIONS
163	Tmprss6, An Inhibitor of Hepatic Bmp/Smad Signaling, Is Required for Hepcidin Suppression and Iron Loading In a Mouse Model of β-Thalassemia. Blood, 2010, 116, 164-164.	0.6	2
164	ß-Thalassemic Mice Require Functional Hfe to Modulate Hepcidin Expression In Response to Iron Overload. Blood, 2010, 116, 2063-2063.	0.6	0
165	Hfe Modulates the Response to Erythopoietic Stress In Wt Mice by Two Distinct Mechanisms. Blood, 2010, 116, 4251-4251.	0.6	8
166	Production of βâ€globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous I² ⁰ 39 thalassemia patients. American Journal of Hematology, 2009, 84, 720-728.	2.0	30
167	Development of K562 cell clones expressing βâ€globin mRNA carrying the β ⁰ 39 thalassaemia mutation for the screening of correctors of stopâ€codon mutations. Biotechnology and Applied Biochemistry, 2009, 54, 41-52.	1.4	15
168	Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15454-15459.	3.3	240
169	Future alternative therapies for Î ² -thalassemia. Expert Review of Hematology, 2009, 2, 685-697.	1.0	23
170	Ineffective erythropoiesis and thalassemias. Current Opinion in Hematology, 2009, 16, 187-194.	1.2	133
171	Use of Jak2 Inhibitors to Limit Ineffective Erythropoiesis and Iron Absorption in Mice Affected by β-Thalassemia and Other Disorders of Red Cell Production Blood, 2009, 114, 2020-2020.	0.6	13
172	Macrophage Depletion Leads to Modification of Thalassemic Phenotype Blood, 2009, 114, 2023-2023.	0.6	1
173	Following Beta-Globin Gene Transfer, the Production of Hemoglobin Depends Upon the Beta-Thalassemia Genotype Blood, 2009, 114, 978-978.	0.6	4
174	Id1 Represses Osteoclast-Dependent Transcription and Affects Bone Formation and Hematopoiesis. PLoS ONE, 2009, 4, e7955.	1.1	29
175	Gene Therapy in Thalassemia and Hemoglobinopathies. Mediterranean Journal of Hematology and Infectious Diseases, 2009, 1, e2009008.	0.5	16
176	Absence of the Hemochromatosis Gene Hfe Confers Protection Under Conditions of Stress Erythropoiesis Blood, 2009, 114, 4044-4044.	0.6	0
177	Protective role of calreticulin in HFE hemochromatosis. Free Radical Biology and Medicine, 2008, 44, 99-108.	1.3	17
178	Regulation of Iron Absorption in Hemoglobinopathies. Current Molecular Medicine, 2008, 8, 646-662.	0.6	27
179	Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia. Blood, 2008, 112, 875-885.	0.6	146
180	Increased Hepcidin Expression in Mice Affected by β-Thalassemia Reduces Iron Overload with No Effect on Anemia. Blood, 2008, 112, 128-128.	0.6	4

#	Article	IF	CITATIONS
181	Protective role of calreticulin in HFE hemochromatosis. FASEB Journal, 2008, 22, 758.37.	0.2	0
182	Absence of the Hemochromatosis Gene HFE Confers Protection Under Conditions of Stress Erythropoiesis Blood, 2008, 112, 3848-3848.	0.6	1
183	Potential Use of Jak2 Inhibitors to Limit Ineffective Erythropoiesis and Reverse Splenomegaly in β-Thalassemia Blood, 2008, 112, 1877-1877.	0.6	Ο
184	The Effect of Dietary Iron on Tissue Iron Levels in Intact and Splenectomized Mice Affected by β-Thalassemia Blood, 2008, 112, 1876-1876.	0.6	4
185	Therapeutic Options for Patients with Severe β-Thalassemia: The Need for Globin Gene Therapy. Human Gene Therapy, 2007, 18, 1-9.	1.4	48
186	Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood, 2007, 109, 5027-5035.	0.6	277
187	Expression of Genes Regulating Iron Metabolism in Hepatocyte Cell-Line HepG2 Induced by Sera from MDS Patients Blood, 2007, 110, 4612-4612.	0.6	5
188	Downregulation of hepcidin and haemojuvelin expression in the hepatocyte cell-line HepG2 induced by thalassaemic sera. British Journal of Haematology, 2006, 135, 129-138.	1.2	73
189	mRNA expression of iron regulatory genes in β-thalassemia intermedia and β-thalassemia major mouse models. American Journal of Hematology, 2006, 81, 479-483.	2.0	65
190	Therapeutic Options for Patients with Severe?-Thalassemia: The Need for Globin Gene Therapy. Human Gene Therapy, 2006, .	1.4	0
191	Progress Toward the Genetic Treatment of the β-Thalassemias. Annals of the New York Academy of Sciences, 2005, 1054, 78-91.	1.8	36
192	Role of Iron in Inducing Oxidative Stress in Thalassemia: Can It Be Prevented by Inhibition of Absorption and by Antioxidants?. Annals of the New York Academy of Sciences, 2005, 1054, 118-123.	1.8	76
193	Exploring the Role of Hepcidin, an Antimicrobial and Iron Regulatory Peptide, in Increased Iron Absorption in β-Thalassemia. Annals of the New York Academy of Sciences, 2005, 1054, 417-422.	1.8	19
194	Oxidative Stress of RBC in a Murine Model of Beta-Thalassemia Can Be Reversed by Treatment with Antioxidants Blood, 2005, 106, 3643-3643.	0.6	2
195	Kinetic of Iron Absorption and Expression of Iron Related Genes in Beta-Thalassemia Blood, 2005, 106, 3846-3846.	0.6	8
196	Decreased hepcidin mRNA expression in thalassemic mice. British Journal of Haematology, 2004, 124, 123-124.	1.2	91
197	Globin gene transfer for treatment of the β-thalassemias and sickle cell disease. Best Practice and Research in Clinical Haematology, 2004, 17, 517-534.	0.7	14
198	Globin gene transfer for treatment of the β-thalassemias and sickle cell disease. Best Practice and Research in Clinical Haematology, 2004, 17, 517-534.	0.7	7

#	Article	IF	CITATIONS
199	Hepcidin Expression in Cultured Liver Cells Responds Differently to Iron Overloaded Sera Derived from Patients with Thalassemia and Hemochromatosis Blood, 2004, 104, 3196-3196.	0.6	3
200	Globin gene transfer: a paradigm for transgene regulation and vector safety. Gene Therapy and Regulation, 2003, 2, 149-175.	0.3	9
201	A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human β-globin gene transfer. Blood, 2003, 101, 2932-2939.	0.6	211
202	Successful treatment of murine β-thalassemia intermedia by transfer of the human β-globin gene. Blood, 2002, 99, 1902-1908.	0.6	159
203	Therapeutic globin gene delivery using lentiviral vectors. Current Opinion in Molecular Therapeutics, 2002, 4, 505-14.	2.8	12
204	Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature, 2000, 406, 82-86.	13.7	581
205	The cHS4 Insulator Increases the Probability of Retroviral Expression at Random Chromosomal Integration Sites. Journal of Virology, 2000, 74, 4679-4687.	1.5	198
206	Selection and Mapping of Replication Origins from a 500-kb Region of the Human X Chromosome and Their Relationship to Gene Expression. Genomics, 1999, 62, 11-20.	1.3	12
207	Basic Principles of Gene Transfer in Hematopoietic Stem Cells. , 1999, 36, 1-19.		4
208	Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Seminars in Hematology, 1998, 35, 112-25.	1.8	84
209	Selection and Fine Mapping of Chromosome-Specific cDNAs: Application to Human Chromosome 1. Genomics, 1996, 38, 149-154.	1.3	5
210	A Comparative Transcriptional Map of a Region of 250 kb on the Human and Mouse X Chromosome between the G6PD and the FLN1 Genes. Genomics, 1995, 28, 377-382.	1.3	7
211	Isolation of new genes in distal Xq28: transcriptional map and identification of a human homologue of the ARD1 N-acetyl transferase of Saccharomyces cerevisiae. Human Molecular Genetics, 1994, 3, 1061-1067.	1.4	44
212	Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genetics, 1994, 8, 323-327.	9.4	857
213	Comparative Mapping of the Actin-Binding Protein 280 Genes in Human and Mouse. Genomics, 1994, 21, 428-430.	1.3	21
214	Identification of Genes and Construction of a Transcriptional Map in Xq28. , 1994, , 5-10.		0
215	Mapping of two genes encoding isoforms of the actin binding protein ABP-280, a dystrophin like protein, to Xq28 and to chromosome 7. Human Molecular Genetics, 1993, 2, 761-766.	1.4	73
216	Transcriptional organization of a 450-kb region of the human X chromosome in Xq28. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10977-10981.	3.3	67

#	Article	IF	CITATIONS
217	Methylation and sequence analysis around Eagi sites: identification of 28 new CpG islands in XQ24-XQ28. Nucleic Acids Research, 1992, 20, 727-733.	6.5	44
218	Identification of novel RFLPs in the vicinity of CpG islands in Xq28: application to the analysis of the pattern of X chromosome inactivation. American Journal of Human Genetics, 1992, 50, 156-63.	2.6	19
219	The nucleotide sequence of a CpG island demonstrates the presence of the first exon of the gene encoding the human lysosomal membrane protein lamp2 and assigns the gene to Xq24. Genomics, 1991, 9, 551-554.	1.3	16
220	Probes for CpG islands on the distal long arm of the human X chromosome are clustered in Xq24 and Xq28. Genomics, 1990, 8, 664-670.	1.3	24