
Marina Bouche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844425/publications.pdf Version: 2024-02-01

Μλαινίλ Βουςμε

#	Article	IF	CITATIONS
1	Inhibition of PKCÎ, Improves Dystrophic Heart Phenotype and Function in a Novel Model of DMD Cardiomyopathy. International Journal of Molecular Sciences, 2022, 23, 2256.	1.8	1
2	A tribute to Professor Sergio Adamo, Full Professor of Histology and Embryology at Sapienza University, Rome. European Journal of Translational Myology, 2022, 32, .	0.8	0
3	Anti‑oncogenic and pro‑myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma. Oncology Reports, 2022, 48, .	1.2	1
4	A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skeletal Muscle, 2021, 11, 7.	1.9	12
5	Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. International Journal of Molecular Sciences, 2021, 22, 2502.	1.8	7
6	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	2.3	20
7	Accelerating the Mdx Heart Histo-Pathology through Physical Exercise. Life, 2021, 11, 706.	1.1	4
8	A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics, 2021, 11, 116.	1.3	23
9	A Simple Method for the Isolation and in vitro Expansion of Highly Pure Mouse and Human Satellite Cells. Bio-protocol, 2021, 11, e4238.	0.2	1
10	Lack of PKCÎ, Promotes Regenerative Ability of Muscle Stem Cells in Chronic Muscle Injury. International Journal of Molecular Sciences, 2020, 21, 932.	1.8	13
11	Targeting PKCÎ, Promotes Satellite Cell Self-Renewal. International Journal of Molecular Sciences, 2020, 21, 2419.	1.8	6
12	Splenic Ly6Chi monocytes are critical players in dystrophic muscle injury and repair. JCI Insight, 2020, 5, .	2.3	35
13	HDAC inhibitors tune miRNAs in extracellular vesicles of dystrophic muscleâ€resident mesenchymal cells. EMBO Reports, 2020, 21, e50863.	2.0	45
14	Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genetics, 2019, 15, e1008408.	1.5	35
15	Muscle Expression of <i>SOD1^{G93A}</i> Triggers the Dismantlement of Neuromuscular Junction <i>via</i> PKC-Theta. Antioxidants and Redox Signaling, 2018, 28, 1105-1119.	2.5	56
16	Targeting early PKCÎ,â€dependent Tâ€cell infiltration of dystrophic muscle reduces disease severity in a mouse model of muscular dystrophy. Journal of Pathology, 2018, 244, 323-333.	2.1	18
17	Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths?. European Journal of Translational Myology, 2018, 28, 7931.	0.8	9
18	Culture conditions influence satellite cell activation and survival of single myofibers. European Journal of Translational Myology, 2018, 28, 7567.	0.8	14

MARINA BOUCHE

#	Article	IF	CITATIONS
19	Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1685-1699.	1.2	40
20	Skeletal Muscle: A Significant Novel Neurohypophyseal Hormone-Secreting Organ. Frontiers in Physiology, 2018, 9, 1885.	1.3	12
21	Pharmacological Inhibition of PKCÎ, Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy. EBioMedicine, 2017, 16, 150-161.	2.7	22
22	Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions <i>via</i> epigenetic modulation of Scaâ€1 and Pw1 promoters. FASEB Journal, 2016, 30, 1404-1415.	0.2	6
23	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
24	Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Laboratory Investigation, 2015, 95, 585-602.	1.7	37
25	Inflammation in Muscle Repair, Aging, and Myopathies. BioMed Research International, 2014, 2014, 1-3.	0.9	13
26	From Innate to Adaptive Immune Response in Muscular Dystrophies and Skeletal Muscle Regeneration: The Role of Lymphocytes. BioMed Research International, 2014, 2014, 1-12.	0.9	51
27	Protein kinase C theta (PKCÎ,) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCÎ,. Pflugers Archiv European Journal of Physiology, 2014, 466, 2215-2228.	1.3	28
28	Protein Kinase C-Theta Controls the CLC-1 Chloride Channel Function and Skeletal Muscle Phenotype: A Biophysical and Gene Expression Study in Pkc-Theta Null Mice. Biophysical Journal, 2014, 106, 550a.	0.2	0
29	Targeting PKCÎ, in skeletal muscle and muscle diseases: good or bad?. Biochemical Society Transactions, 2014, 42, 1550-1555.	1.6	11
30	Invited Commentary on "Enrichment and Characterization of Two Subgroups of Committed Osteogenic Cells in the Mouse Endosteal Bone Marrow with Expression Levels of CD24?. Journal of Bone Marrow Research, 2014, 02, .	0.2	0
31	Intracellular signaling in ER stressâ€induced autophagy in skeletal muscle cells. FASEB Journal, 2013, 27, 1990-2000.	0.2	49
32	Knock down of caveolinâ€1 affects morphological and functional hallmarks of human endothelial cells. Journal of Cellular Biochemistry, 2013, 114, 1843-1851.	1.2	20
33	Characterization of the Role of PKC-Theta in the Modulation of ClC-1 Chloride Channel Function and Calcium Homeostasis in Fast- and Slow-Twitch Skeletal Muscle by using PKC-Theta Null Mice. Biophysical Journal, 2012, 102, 332a-333a.	0.2	1
34	PKC Theta Ablation Improves Healing in a Mouse Model of Muscular Dystrophy. PLoS ONE, 2012, 7, e31515.	1.1	39
35	Thyroid Hormone T3 Counteracts STZ Induced Diabetes in Mouse. PLoS ONE, 2011, 6, e19839.	1.1	42
36	Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. Journal of Cellular Biochemistry, 2011, 112, 2006-2014.	1.2	20

MARINA BOUCHE

#	Article	IF	CITATIONS
37	PKCÎ, signaling is required for myoblast fusion by regulating the expression of caveolin-3 and \hat{l}^2 1D integrin upstream focal adhesion kinase. Molecular Biology of the Cell, 2011, 22, 1409-1419.	0.9	39
38	Protein kinase CÎ, is required for cardiomyocyte survival and cardiac remodeling. Cell Death and Disease, 2010, 1, e45-e45.	2.7	19
39	Bisperoxovanadium, a phosphoâ€ŧyrosine phosphatase inhibitor, reprograms myogenic cells to acquire a pluripotent, circulating phenotype. FASEB Journal, 2007, 21, 3573-3583.	0.2	20
40	Protein kinase C theta co-operates with calcineurin in the activation of slow muscle genes in cultured myogenic cells. Journal of Cellular Physiology, 2006, 207, 379-388.	2.0	25
41	Transgenic mice with dominant negative PKC-theta in skeletal muscle: A new model of insulin resistance and obesity. Journal of Cellular Physiology, 2003, 196, 89-97.	2.0	59
42	The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. Journal of Cell Science, 2003, 116, 1589-1597.	1.2	43
43	PKCα-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. Journal of Cell Science, 2002, 115, 3587-3599.	1.2	93
44	TGFâ€Î² autocrine loop regulates cell growth and myogenic differentiation in human rhabdomyosarcoma cells. FASEB Journal, 2000, 14, 1147-1158.	0.2	46
45	Isolation and characterization of the murine zinc finger coding gene, ZT2: expression in normal and transformed myogenic cells. Gene, 1999, 230, 81-90.	1.0	5
46	Differentiation dependent expression in muscle cells of ZT3, a novel zinc finger factor differentially expressed in embryonic and adult tissues. Mechanisms of Development, 1996, 54, 107-117.	1.7	11
47	The Inhibition of Differentiation Caused by TGFβ in Fetal Myoblasts Is Dependent upon Selective Expression of PKCÎ,: A Possible Molecular Basis for Myoblast Diversification during Limb Histogenesis. Developmental Biology, 1996, 180, 156-164.	0.9	48
48	TPA-Induced Differentiation of Human Rhabdomyosarcoma Cells: Expression of the Myogenic Regulatory Factors. Experimental Cell Research, 1993, 208, 209-217.	1.2	36
49	MyoD, myogenin independent differentiation of primordial myoblasts in mouse somites Journal of Cell Biology, 1992, 116, 1243-1255.	2.3	110
50	ACTH-like peptides in postimplantation mouse embryos: A possible role in myoblast proliferation and muscle histogenesis. Developmental Biology, 1992, 151, 446-458.	0.9	11
51	Adrenocorticotropin is a specific mitogen for mammalian myogenic cells. Developmental Biology, 1989, 131, 331-336.	0.9	36
52	Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system Journal of Cell Biology, 1988, 107, 587-596.	2.3	30
53	Single acetylcholine-activated channels in cultured rhabdomyoblasts. Experimental Cell Research, 1987, 171, 498-502.	1.2	3
54	Phosphorylation of specific polypeptides induced by 12-O-tetra-decanoylphorbol-13-acetate in chick embryo fibroblasts. Carcinogenesis, 1984, 5, 559-563.	1.3	2

MARINA BOUCHE

#	Article	IF	CITATIONS
55	Specific TPA-induced protein phosphorylations in cultured myotubesâ~†. Cell Biology International Reports, 1983, 7, 189-189.	0.7	3
56	Changes in protein and glycoprotein biosynthesis during differentiation of satellite cells in vitro. Experimental Cell Research, 1982, 138, 489-494.	1.2	3
57	TPA-Induced Inhibition of the Expression of Differentiative Traits in Cultured Myotubes: Dependence on Protein Synthesis. Differentiation, 1982, 21, 62-65.	1.0	34
58	In vitro differentiation of satellite cells isolated from normal and dystrophic mammalian muscles. A comparison with embryonic myogenic cells. Cell Differentiation, 1980, 9, 357-368.	1.3	89
59	Differentiation in Culture of Myogenic Cells from Adult Mouse Muscle. Bollettino Di Zoologia, 1978, 45, 369-374.	0.3	0