Oleg Ershov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844385/publications.pdf

Version: 2024-02-01

224 papers

1,642 citations

394421 19 h-index 25 g-index

284 all docs

284 docs citations

times ranked

284

555 citing authors

#	Article	IF	CITATIONS
1	Domino synthesis of 3-amino-8-hydroxy-1,6-dioxo-2,7-diazaspiro[4.4]non-3-ene-4-carbonitriles. Tetrahedron Letters, 2013, 54, 2143-2145.	1.4	35
2	Domino-synthesis and fluorescence properties of 4-cyano-2-oxo-1,2-dihydropyridine-3-carboxamides and 2-oxo-1,2-dihydropyridine-3,4-dicarbonitriles. RSC Advances, 2015, 5, 34191-34198.	3. 6	35
3	Glycine catalyzed diastereoselective domino-synthesis of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles in water. Green Chemistry, 2015, 17, 4234-4238.	9.0	30
4	Double heteroannulation reactions of 1-naphthol with alkyl- and arylmethylidene derivatives of malononitrile dimer. Tetrahedron Letters, 2015, 56, 1830-1832.	1.4	29
5	Synthesis and solid-state fluorescence of aryl substituted 2-halogenocinchomeronic dinitriles. RSC Advances, 2016, 6, 82227-82232.	3.6	28
6	Reaction between 4-oxoalkane-1,1,2,2-tetracarbonitriles and morpholine: regioselective synthesis of 5-amino-2-(morpholin-4-yl)-3-(2-oxoalkyl)-3H-pyrrol-3,4-dicarbonitriles. Tetrahedron Letters, 2011, 52, 6407-6410.	1.4	27
7	One-pot synthesis of 2-(dicyanomethylene)-1,2-dihydropyridine derivatives. Tetrahedron Letters, 2014, 55, 2730-2733.	1.4	27
8	Regiospecific synthesis of gem -dinitro derivatives of 2-halogenocycloalka[b]pyridine-3,4-dicarbonitriles. Tetrahedron, 2015, 71, 7445-7450.	1.9	27
9	Heterocyclization of arylmethylidene derivatives of malononitrile dimer: synthesis of 4-amino-6-aryl-2-halopyridine-3,5-dicarbonitriles. Tetrahedron Letters, 2013, 54, 21-22.	1.4	25
10	Synthesis of photochromic 5,6-diaryl-2-chloropyridine-3,4-dicarbonitriles from 3,4-diaryl-4-oxobutane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2014, 50, 1372-1374.	0.8	24
11	2-Pyridone-based fluorophores: Synthesis and fluorescent properties of pyrrolo[3,4- c]pyridine derivatives. Dyes and Pigments, 2016, 134, 459-464.	3.7	24
12	Novel chromophores of cyanopyridine series with strong solvatochromism and near-infrared solid-state fluorescence. Dyes and Pigments, 2018, 156, 357-368.	3.7	24
13	Directed synthesis of new spiro-fused photochromes of diarylethene series. Chemistry of Heterocyclic Compounds, 2015, 51, 518-525.	1.2	23
14	Diastereoselective Cascade Assembly of Functionalized Pyrano[3,4- <i>c</i>)pyrrole Derivatives. Organic Letters, 2016, 18, 1940-1943.	4.6	23
15	Reaction of 4-aryl-4-oxobutane-1,1,2,2-tetracarbonitriles with hydrochloric acid. Russian Journal of Organic Chemistry, 2009, 45, 475-476.	0.8	22
16	Synthesis, solution and solid-state fluorescence of 2-diethylaminocinchomeronic dinitrile derivatives. RSC Advances, 2017, 7, 34886-34891.	3 . 6	22
17	Reaction of \hat{l} ±, \hat{l} ² -unsaturated ketones with tetracyanoethylene. Tetrahedron, 2001, 57, 5815-5824.	1.9	21
18	Three-component synthesis of 2-chloropyridine-3,4-dicarbonitriles. Russian Journal of Organic Chemistry, 2010, 46, 617-618.	0.8	21

#	Article	IF	Citations
19	Three-component synthesis and optical properties of triarylpyridines containing a buta-1,3-diene-1,1,3-tricarbonitrile fragment. Tetrahedron Letters, 2017, 58, 3919-3923.	1.4	20
20	Tuning the photochromic properties of chromophores containing a nitrile-rich acceptor: a novel branch in the investigation of negative photochromes. New Journal of Chemistry, 2019, 43, 8414-8417.	2.8	20
21	Heterocyclization of michael adducts of \hat{l}^2 -diketones with arylmethylidene derivatives of malononitrile dimers. Russian Journal of Organic Chemistry, 2014, 50, 244-250.	0.8	18
22	Interaction of 4-oxoalkane-1,1,2,2-tetracarbonitriles with Lawesson's reagent – a new approach to the synthesis of 2,2′-disulfanediylbis(1H-pyrroles). The synthesis of photochromic diarylethene with a disulfide bridge. RSC Advances, 2015, 5, 65316-65320.	3.6	18
23	Four component DHARMA-synthesis of some densely functionalized 1,8-naphthyridines. Tetrahedron Letters, 2015, 56, 5434-5436.	1.4	18
24	Synthesis of 5-Aryl-2,4-diamino-8-hydroxy-5H-chromeno[2,3-b]pyridine-3-carbonitriles. Russian Journal of Organic Chemistry, 2006, 42, 622-623.	0.8	17
25	Comparative in vivo evaluation of polyalkoxy substituted 4H-chromenes and oxa-podophyllotoxins as microtubule destabilizing agents in the phenotypic sea urchin embryo assay. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3914-3918.	2.2	17
26	The synthesis of 3-amidinio-2-aminopyridine-4-carboxylates. Tetrahedron Letters, 1997, 38, 4455-4456.	1.4	16
27	Tunable single-frequency diode laser at wavelength î»=1.65î¼m for methane concentration measurements. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 3337-3340.	3.9	16
28	Synthesis of 2,2,3,3-tetracyanocyclopropyl ketones and their reactions with oxygen-centered nucleophiles. Russian Journal of Organic Chemistry, 2009, 45, 1325-1335.	0.8	16
29	Rearrangement of 4-oxobutane-1,1,2,2-tetracarbonitriles to the penta-1,3-diene-1,1,3-tricarbonitrile moiety as an approach to novel acceptors for donor–acceptor chromophores. Tetrahedron Letters, 2016, 57, 4101-4104.	1.4	16
30	One-step synthesis of chromeno [2,3-b] pyridines. Russian Journal of Organic Chemistry, 2016, 52, 830-833.	0.8	16
31	Crystallographic characterization of ethylammonium salts of tetracyanopyridine (TCPy) and fluorescence determination of the degree of substitution of the amino nitrogen atom thereof. CrystEngComm, 2019, 21, 5500-5507.	2.6	16
32	Tuning solid-state fluorescence of a novel group D- $i\in$ -A chromophores with a reactive hydroxytricyanopyrrole (HTCP) acceptor. Dyes and Pigments, 2019, 165, 451-457.	3.7	16
33	Single-stage synthesis of 3-amino-1,2-dicyano-4,6-diazabicyclo[3,2,1]oct-2-en-7-ones from \hat{l}^2 , \hat{l}^3 , \hat{l}^3 -tetracyanoalkanones. Mendeleev Communications, 1997, 7, 112-113.	1.6	15
34	2-Acyl(aroyl)-1,1,3,3-tetracyanopropenides: I. Synthesis of 2-[5-amino-2-aryl-2-chloro-4-cyanofuran-3(2H)-ylidene]-propanedinitriles by reaction of potassium 2-aroyl-1,1,3,3-tetracyanopropenides with concentrated hydrochloric acid. Russian Journal of Organic Chemistry, 2011, 47, 405-407.	0.8	15
35	2-Acyl(aroyl)-1,1,3,3-tetracyanopropenides: II. Synthesis of 2-[2-(alkylsulfanyl)-5-amino-2-aryl-4-cyano-2,3-dihydrofuran-3-ylidenepropanedinitriles by reaction with thiols. Russian Journal of Organic Chemistry, 2011, 47, 1161-1164.	0.8	15
36	Spiro heterocyclization of 4-aryl-4-oxobutane-1,1,2,2-tetracarbonitriles to 3H-pyrrole derivatives, 2-oxa-7-azaspiro[4.4]nona-3,6,8-trienes. Russian Journal of Organic Chemistry, 2013, 49, 864-866.	0.8	15

#	Article	IF	CITATIONS
37	Reaction of 4-aryl-2-aminobuta-1,3-diene-1,1,3-tricarbonitriles with CH-nucleophiles: I. Synthesis of 5-aryl-2,4-diamino-8,8-dimethyl-6-oxo-6,7,8,9-tetrahydro-5H-chromeno[2,3-b]pyridine-3-carbonitriles. Russian Journal of Organic Chemistry, 2006, 42, 1380-1382.	0.8	14
38	Synthesis of 2-halo-6-hydroxy-5,5-dimethyl(ethyl)-5,6-dihydro-1H-pyridine-3,4,4-tricarbonitriles by the reaction of tetracyanoethylene with aldehydes. Mendeleev Communications, 2006, 16, 115-117.	1.6	14
39	Reaction of 2,2,3,3-tetracyanocyclopropyl ketones with sodium and potassium hydroxides. Russian Journal of Organic Chemistry, 2012, 48, 1447-1455.	0.8	14
40	A novel method for the domino synthesis of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles and studies of stereochemical characteristics of formation and structure thereof. Chemistry of Heterocyclic Compounds, 2015, 51, 457-461.	1.2	14
41	Reaction of Tetracyanoethylene with 2-Substituted Cyclohexanones. Russian Journal of Organic Chemistry, 2002, 38, 1001-1004.	0.8	13
42	Synthesis of diethylammonium 3,4-dicyano-5,6,7,8-tetrahydroquinolin-2-olates. Russian Journal of Organic Chemistry, 2010, 46, 615-616.	0.8	13
43	Regioselective reaction of 5,6-dialkyl-2-halopyridine-3,4-dicarbonitriles with ammonia. Russian Journal of Organic Chemistry, 2012, 48, 426-429.	0.8	13
44	One-stage synthesis of highly functionalized N-substituted 1,8-naphthyridines. Russian Journal of Organic Chemistry, 2013, 49, 1715-1717.	0.8	13
45	Synthesis of 2-[5-amino-2,3-dihydro-4H-imidazol-4-ylidene]malononitriles. Tetrahedron Letters, 2006, 47, 1445-1447.	1.4	12
46	One-pot transformation of cyano oxiranes into furo [3,2-c] isothiazole derivatives. Tetrahedron Letters, 2011, 52, 4724-4725.	1.4	12
47	Synthesis of 2-(3-cyano-5-hydroxy-5-methyl-4-vinylene-1 <i>H</i> -pyrrol-2(5 <i>H</i>)-ylidene)malononitriles – novel functionalized analogs of tricyanofuran-containing (TCF) push–pull chromophores. Synthetic Communications, 2018, 48, 2850-2858.	2.1	12
48	DIPEA catalyzed step-by-step synthesis and photophysical properties of thieno[2,3-b]pyridine derivatives. Tetrahedron, 2019, 75, 130465.	1.9	12
49	Synthesis of 4-Formyl-3-cyclopentene-1,1,2-tricarbonitriles. Russian Journal of Organic Chemistry, 2005, 41, 1757-1763.	0.8	11
50	Reaction of tetracyanoethylated cyclohexanones with water in acidic medium. Russian Journal of General Chemistry, 2010, 80, 2078-2080.	0.8	11
51	A new heterocycle: furo[3,2-c]isoselenazole. Tetrahedron Letters, 2016, 57, 2772-2773.	1.4	11
52	Methods of assembling 3-azabicyclo[3.1.0]hexane skeleton (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 447-449.	1.2	11
53	Synthesis of pyridine derivatives containing a tricyanobutadiene motif (microreview). Chemistry of Heterocyclic Compounds, 2017, 53, 1178-1180.	1.2	11
54	Directed synthesis of alkyl-substitued pyrrolo[3,4-c]pyrrole-1,3,4,6-tetraones. Russian Journal of Organic Chemistry, 2013, 49, 1661-1665.	0.8	10

#	Article	IF	Citations
55	New approach to synthesis of 4-arylcoumarin derivatives. Tetrahedron Letters, 2015, 56, 6145-6148.	1.4	10
56	Diastereoselective synthesis of 3,4-dihydro-2H-pyran-4-carboxamides through an unusual regiospecific quasi-hydrolysis of a cyano group. Beilstein Journal of Organic Chemistry, 2016, 12, 2093-2098.	2.2	10
57	The rare transformation of 2,7-diazaspiro[4.4]nonanes in furo[3,4-c]pyridines. RSC Advances, 2016, 6, 10597-10600.	3.6	10
58	Synthesis of fluorescent alkoxybenzylidene derivatives of malononitrile dimer in water in the presence of Triton X-100. Russian Journal of Organic Chemistry, 2017, 53, 1025-1029.	0.8	10
59	Synthesis and solid-state fluorescence of 2-alkylamino-4-aminopyridine-3,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 886-890.	0.8	10
60	Novel group of negative photochromes containing a nitrile-rich acceptor: synthesis and photochromic properties. Research on Chemical Intermediates, 2019, 45, 4625-4636.	2.7	10
61	Low-temperature AC microcalorimeter and potentialities of the AC technique. Cryogenics, 1994, 34, 461-464.	1.7	9
62	Synthesis of a new organic anion by reaction of 4-aryl(hetaryl)-4-oxobutane-1,1,2,2-tetracarbonitriles with ammonia. Russian Journal of Organic Chemistry, 2010, 46, 597-598.	0.8	9
63	Reaction of bromomalononitrile with 2-amino-4-arylbuta-1,3-diene-1,1,3-tricarbonitriles. Russian Journal of Organic Chemistry, 2011, 47, 363-365.	0.8	9
64	Reactions of $2\hat{a}\in^2$ -oxo- $1\hat{a}\in^2$, $2\hat{a}\in^2$ -dihydrospiro[cyclopropane-1,3 $\hat{a}\in^2$ -indole]-2,2,3,3-tetracarbonitriles with nucleophiles. Russian Journal of Organic Chemistry, 2011, 47, 392-401.	0.8	9
65	Synthesis of 5-amino-3H-pyrrole-3,4-dicarbonitriles from 4-aryl-4-oxobutane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2011, 47, 1426-1427.	0.8	9
66	Hydrolysis and acylation of imino group in E/Z-isomers of 3,4-dialkyl-8-amino-1-imino-6-morpholin-4-yl-2-oxa-7-azaspiro[4.4]nona-3,6,8-triene-9-carbonitriles. Russian Journal of Organic Chemistry, 2013, 49, 1195-1198.	0.8	9
67	Three-component synthesis of alkylammonium 4-cyano-5-(dicyanomethylene)-2-hydroxy-2,5-dihydropyrrol-1-ides. Research on Chemical Intermediates, 2018, 44, 3565-3579.	2.7	9
68	Synthesis and characterization of 2-(4-aryl-3-cyano-6-methylpyridin-2(1H)-ylidene)malononitriles. Tetrahedron Letters, 2019, 60, 1170-1173.	1.4	9
69	Synthesis of 2′-Oxo-1′,2′-dihydrospiro[cyclopropane-1,3′-indole]-2,2,3,3-tetracarbonitriles. Russian Jou of Organic Chemistry, 2006, 42, 1414-1416.	ırnal 0.8	8
70	One-step transformation of tetracyanocyclopropyl ketones into pyrrolo[3,4-c]pyridine derivatives. Russian Journal of Organic Chemistry, 2010, 46, 1266-1267.	0.8	8
71	Reactions of tetracyanocyclopropyl ketones with ammonia and primary amines. Russian Journal of Organic Chemistry, 2012, 48, 491-493.	0.8	8
72	New push–pull chromophores. Synthesis of 2-[4-Aryl-3-cyano-5-hydroxy-5-methyl-1H-pyrrol-2(5H)-ylidene]malononitriles. Russian Journal of Organic Chemistry, 2016, 52, 1440-1443.	0.8	8

#	Article	IF	CITATIONS
73	Synthesis of 3H-pyrroles (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 279-281.	1.2	8
74	Iminolactone-lactam rearrangement in reactions of \hat{I}^3 -oxonitriles. Chemistry of Heterocyclic Compounds, 2017, 53, 948-952.	1.2	8
75	Novel fluorescent sensor for silver (I) based on the cinnamylidene derivatives of malononitrile trimer. Journal of Molecular Structure, 2020, 1222, 128935.	3.6	8
76	Alkali metal salts of a tetracyanopyridine (TCPy) derivative: structure characterization and luminescence properties. CrystEngComm, 2021, 23, 2816-2824.	2.6	8
77	Reaction of tetracyanoethylene with aldehydes. Synthesis of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles. Russian Journal of Organic Chemistry, 2006, 42, 193-197.	0.8	7
78	Carbanion cleavage in 3-benzoylcyclopropane-1,1,2,2-tetracarbonitrile effected by alcoholates. Russian Journal of Organic Chemistry, 2007, 43, 1565-1566.	0.8	7
79	One-pot synthesis of 2-(2-alkoxy-5-amino-4-cyano-2-methylfuran-3(2H)-ylidene)malononitriles. Chemistry of Heterocyclic Compounds, 2009, 45, 1035-1038.	1.2	7
80	Three-component "domino―synthesis of 1,8-dialkyl-3-halo-8-methyl-6-oxo-2,7-diazabicyclo[3.2.1]oct-3-ene-4,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2009, 45, 470-471.	0.8	7
81	2-Acyl(aroyl)-1,1,3,3-tetracyanopropenides: IV. Synthesis of 1-alkyl(aryl)-4-amino-6-iodo-3-oxo-1,3-dihydrofuro[3,4-c]pyridine-7-carbonitriles. Russian Journal of Organic Chemistry, 2012, 48, 1107-1110.	0.8	7
82	2-Acyl(aroyl)-1,1,3,3-tetracyanopropenides: VI. Reaction with hydrogen halides. Russian Journal of Organic Chemistry, 2014, 50, 1097-1106.	0.8	7
83	Regiospecific Reduction of the C=N Bond in 5,6-Dialkyl-2-Chloropyridine-3,4-Dicarbonitriles. Chemistry of Heterocyclic Compounds, 2014, 50, 1057-1059.	1.2	7
84	Synthesis of 2-methoxypyridine-3,4-dicarbonitriles and 4-methoxy-2,3-dihydro-1H-pyrrolo[3,4]pyridine-1,3-diones. Russian Journal of Organic Chemistry, 2015, 51, 1668-1670.	0.8	7
85	Solvent-free synthesis of 4-oxoalkane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1353-1355.	0.8	7
86	Synthesis of polycyano-anions conjugated with an aromatic ring. Tetrahedron Letters, 2017, 58, 4003-4005.	1.4	7
87	Rearrangement of 4-oxoalkane-1,1,2,2-tetracarbonitriles in the directed synthesis of aryl-substituted 2-(3-cyano-5-hydroxy-1,5-dihydro-2H-pyrrol-2-ylidene)malononitriles. Chemistry of Heterocyclic Compounds, 2017, 53, 1057-1060.	1.2	7
88	Dibromomalononitrile-potassium bromide complex as a mild bromination and oxidation reagent for the synthesis of mono-, di- and trimethoxyphenyl bromopyridines. Tetrahedron Letters, 2018, 59, 1398-1399.	1.4	7
89	Reaction of 2,2,3,3-Tetracyanocyclopropanecarboxylic Acid with Iodides. Synthesis of 3-Cyano-4-dicyanomethylidene-5-oxo-4,5-dihydro-1H-pyrrol-2-olates. Russian Journal of Organic Chemistry, 2005, 41, 523-526.	0.8	6
90	Antitumor activity of polycyano-substituted carbo- and heterocycles prepared from 3-(2,2-dialkylhydrazino)-4-R-1,1,2,2-tetracyanocyclopentanes. Pharmaceutical Chemistry Journal, 2008, 42, 670-673.	0.8	6

#	Article	IF	Citations
91	Synthesis of epoxidated benzylidene derivatives of malononitrile dimer. Russian Journal of Organic Chemistry, 2010, 46, 1883-1884.	0.8	6
92	Reaction of tetracyanocyclopropyl ketones with hydrazine hydrate. Russian Journal of Organic Chemistry, 2011, 47, 722-727.	0.8	6
93	One-pot synthesis of 4-alkyl-2-amino-4 <i>H</i> -chromene derivatives. Heterocyclic Communications, 2015, 21, 175-177.	1.2	6
94	MIRC reactions of 4-aryl-2-aminobuta-1,3-diene-1,1,3-tricarbonitriles. Synthesis of 2-amino-6-aryl-5-cyano-4-(dicyanomethylidene)-3-azabicyclo[3.1.0]hex-2-ene-1-carboxylic acid esters and amides. Russian Journal of Organic Chemistry, 2015, 51, 849-852.	0.8	6
95	Synthesis of new derivatives of 2-halocinchomeronic acid. Russian Journal of Organic Chemistry, 2016, 52, 1217-1219.	0.8	6
96	Three-component synthesis of 5-aryl-1,8-naphthyridine-3-carbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1463-1467.	0.8	6
97	Synthesis of some 2-ylidene-1,3-dithiolanes. Russian Journal of Organic Chemistry, 2017, 53, 147-149.	0.8	6
98	Use of a water solution of surfactant in Knoevenagel reaction. Russian Journal of Organic Chemistry, 2017, 53, 1270-1271.	0.8	6
99	Synthesis of 2-(5-aryl-4-methyl-2-oxo-1,2-dihydro- 3H-pyrrol-3-ylidene)malononitriles. Russian Journal of Organic Chemistry, 2017, 53, 1601-1603.	0.8	6
100	Synthesis and spectroscopic studies of 3-carbamoylisonicotinic acid derivatives. Tetrahedron Letters, 2018, 59, 2189-2192.	1.4	6
101	Three-Component synthesis and characterization of nicotinamide derivatives containing a buta-1,3-diene-1,1,3-tricarbonitrile fragment. Synthetic Communications, 2018, 48, 2600-2607.	2.1	6
102	Three-Component Synthesis and Optical Properties of Nicotinic Acid Esters Containing Buta-1,3-dien-1,1,3-tricarbonitrile Fragment. Russian Journal of Organic Chemistry, 2018, 54, 1161-1165.	0.8	6
103	Synthesis, Solution and Solidâ€State Fluorescence of 2â€(N ycloamino)cinchomeronic Dinitrile Derivatives. ChemistrySelect, 2020, 5, 7243-7248.	1.5	6
104	An approach to the synthesis of î±-cyanostilbazole derivatives based on the heterocyclization of tetracyanopropenides. Tetrahedron Letters, 2021, 76, 153232.	1.4	6
105	Synthesis and spectral studies of novel nicotinonitrile-based fluorescent dyes. Dyes and Pigments, 2021, 197, 109914.	3.7	6
106	Interaction of tetracyanoethylene with $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes. Synthesis of 2,4-dialkyl-7-imino-6-oxabicyclo[3.2.1]oct-3-ene-1,8,8-tricarbonitriles. Tetrahedron Letters, 2007, 48, 2803-2806.	1.4	5
107	Three-component synthesis of 2-(4-amino-2,5-dihydro-1H-imidazol-5-ylidene)malononitriles. Russian Journal of Organic Chemistry, 2008, 44, 570-576.	0.8	5
108	Reaction of 5,5-dialkyl-2-halo-6-hydroxy-5,6-dihydro-1H-pyridine-3,4,4-tricarbonitriles with aldehyde oximes. Russian Journal of Organic Chemistry, 2008, 44, 1406-1407.	0.8	5

#	Article	IF	CITATIONS
109	2-acyl(aroyl)-1,1,3,3-tetracyanopropenides: V. Reaction with hydrazine hydrate. Russian Journal of Organic Chemistry, 2013, 49, 707-711.	0.8	5
110	One-pot synthesis of 2-Oxo-1,2-dihydropyridine-3,4-dicarbonitriles. Russian Journal of Organic Chemistry, 2015, 51, 1191-1193.	0.8	5
111	Synthesis of 3-aminopyrazolo[3,4-b]pyridine-4-carbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1830-1834.	0.8	5
112	Synthesis of polyfunctional 2-thionicotinonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1600-1602.	0.8	5
113	MIRC reactions of 4-aryl-2-aminobuta-1,3-diene- 1,1,3-tricarbonitriles. Synthesis of alkyl 6-aryl-5-cyano-4-(dicyanomethylidene)-2-oxo-3-azabicyclo[3.1.0]hexane-1-carboxylates. Russian Journal of Organic Chemistry, 2016, 52, 1365-1367.	0.8	5
114	Synthesis and optical properties of new coumarin derivatives based on 2-(2-chlorobenzylidene)malononitrile. Russian Journal of Organic Chemistry, 2017, 53, 47-50.	0.8	5
115	Synthesis of fused derivatives of 1,8-naphthyridine. Russian Journal of Organic Chemistry, 2017, 53, 1243-1248.	0.8	5
116	One-Pot Synthesis of 2-Ylidene-1,3-dithiolanes. Russian Journal of Organic Chemistry, 2019, 55, 276-278.	0.8	5
117	Antiproliferative Activity of N-Substituted 2,4-Diamino-5-Aryl-5,6,7,8,9,10-Hexahydrobenzo[B][1,8]Naphthyridine-3-Carbonitriles. Pharmaceutical Chemistry Journal, 2020, 54, 459-461.	0.8	5
118	The first example of "turn-off―red fluorescence photoswitching for the representatives of nitrile-rich negative photochromes. New Journal of Chemistry, 2020, 44, 6121-6124.	2.8	5
119	New "turn-on―chemosensor for fluorescence detection of silver (I) based on tetracyanopyridine (TCPy). Dyes and Pigments, 2022, 205, 110516.	3.7	5
120	Reaction of 2,2,3,3-tetracyanocyclopropyl ketones with ammonia. Mendeleev Communications, 2000, 10, 25-26.	1.6	4
121	Reactions of 6,6-dialkyl-5,7-dioxo-4,8-dioxaspiro[2.5]octane-1,1,2,2-tetracarbonitriles with O-centered nucleophiles. Russian Journal of Organic Chemistry, 2006, 42, 591-595.	0.8	4
122	Reaction of 2-chloro-6-hydroxy-5,5-dimethyl-5,6-dihydro-1H-pyridine-3,4,4-tricarbonitriles with methanol. Russian Journal of Organic Chemistry, 2007, 43, 938-939.	0.8	4
123	New synthesis of 3-aroylcyclopropane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2007, 43, 1252-1253.	0.8	4
124	Antimicrobial activity of polycyano-substituted carboand heterocycles based on tetracyanoethylene. Pharmaceutical Chemistry Journal, 2009, 43, 659-660.	0.8	4
125	New procedures for preparing 2,2,3,3-tetracyanocyclopropyl ketones. Russian Journal of Applied Chemistry, 2009, 82, 1431-1434.	0.5	4
126	Synthesis and reactivity of methyl 3-acyl-6-amino-4-aryl-5-cyano-4H-pyran-2-carboxylates. Chemistry of Heterocyclic Compounds, 2012, 48, 997-1005.	1,2	4

#	Article	IF	Citations
127	Reaction of 2,2,3,3-tetracyanocyclopropyl ketones with water. Russian Journal of Organic Chemistry, 2012, 48, 485-490.	0.8	4
128	Synthesis of 2,7-dioxabicyclo[3.2.1]octanes (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 213-215.	1.2	4
129	Tricomponent domino synthesis of 6-hydroxy-2-chloro-1,4,5,6-tetrahydropyridine-3,4,4-tricarbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 215-221.	0.8	4
130	Reaction of 2-(2-Oxo-1,2-dihydro-3H-pyrrol-3-ylidene)- malononitriles with C-Nucleophiles. Synthesis of New Spiro-Fused Pyrrole Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1790-1793.	0.8	4
131	Aqueous-Phase Synthesis and Solid-Phase Fluorescence of 3-(Methoxyphenyl)-2-cyanoacrylamides. Russian Journal of Organic Chemistry, 2018, 54, 1100-1102.	0.8	4
132	First representatives of functionalized D–΀–A chromophores containing a tunable hydroxytricyanopyrrole (HTCP) acceptor and <i>N</i> , <i>N</i> disubstituted aminophenyl donor. New Journal of Chemistry, 2019, 43, 17923-17926.	2.8	4
133	Pyrrole ring opening – pyridine ring closure: Recyclization of 2-(2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)malononitriles into highly functionalized nicotinonitriles. Tetrahedron Letters, 2020, 61, 151368.	1.4	4
134	Direct synthesis of variously substituted negative photochromes of hydroxytricyanopyrrole (HTCP) series. Synthetic Communications, 2020, 50, 2413-2421.	2.1	4
135	Synthesis and fine-tuning of thermal stability of the negative nitrile-rich photochromes of hydroxytricyanopyrrole (HTCP) series. Research on Chemical Intermediates, 2020, 46, 3477-3490.	2.7	4
136	Novel approach to the synthesis and optical absorption properties of $2-(2-oxo-1,2-dihydro-3H-pyrrole-3-ylidene) malononitriles. Synthetic Communications, 2021, 51, 727-737.$	2.1	4
137	Facile Synthesis and Spectral Properties of Novel Isomeric Nitrile-Rich Bipyridine Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 1051.	1.2	4
138	Reaction of Tetracyanoethylene with 1,2-Cyclohexanedione and Bis(cyclohexanon-2-yl)methane. Russian Journal of Organic Chemistry, 2001, 37, 291-292.	0.8	3
139	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1509-1511.	0.8	3
140	Title is missing!. Russian Journal of General Chemistry, 2002, 72, 820-821.	0.8	3
141	Synthesis of 3-Acetonyl-1,1,2,2-tetracyanocyclobutanes. Russian Journal of General Chemistry, 2002, 72, 984-985.	0.8	3
142	A car-borne highly sensitive near-IR diode-laser methane detector. Quantum Electronics, 2003, 33, 721-727.	1.0	3
143	Reaction of 4-Oxocyclohexane-1,1,2,2-tetracarbonitriles and 5-Hydroxy-7-oxo-6-azabicyclo[3.2.1]octane-1,2,2-tricarbonitriles with Amines. Russian Journal of General Chemistry, 2004, 74, 744-751.	0.8	3
144	The twofold interpenetrated three-connected three-dimensional (10,3)-net in 2-aminoethene-1,1,2-tricarbonitrile. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o434-o437.	0.4	3

#	Article	IF	Citations
145	Reductive alkylation of disulfides. Synthesis of 2-(alkylsulfanyl)-1H-pyrrole-3-carbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1784-1787.	0.8	3
146	Three-component synthesis of methyl 6-alkyl-3-cyano-2-halopyridine-4-carboxylates. Russian Journal of Organic Chemistry, 2016, 52, 970-973.	0.8	3
147	Synthesis of dinitrochloromethyl pyridine derivatives. Russian Journal of Organic Chemistry, 2017, 53, 1036-1039.	0.8	3
148	Rearrangement of 3-cyano-5H-chromeno [2,3-b] pyridines to 1,6-naphthyridine derivatives. Chemistry of Heterocyclic Compounds, 2017, 53, 1050-1052.	1.2	3
149	Regioselective addition of primary amines to 2-halopyridine-3,4-dicarbonitriles. Synthesis of pyrrolo[3,4-c]pyridines. Russian Journal of Organic Chemistry, 2017, 53, 691-696.	0.8	3
150	Unusual transformations of 7-imino-6-oxabicyclo[3.2.1]oct-3-ene-1,8,8-tricarbonitriles in acidic media. Tetrahedron Letters, 2017, 58, 3148-3150.	1.4	3
151	A New Branch of the Diversity-Oriented Synthesis Based on 4-Oxoalkane-1,1,2,2-tetracarbonitriles: Synthesis of Cyano-Substituted Iminofuran Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1337-1340.	0.8	3
152	Synthesis of pyrano [3,4-c] pyrroles (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 590-592.	1.2	3
153	Synthesis and Optical Properties of Cinnamylidene Derivatives of Malononitrile Trimer. Russian Journal of Organic Chemistry, 2019, 55, 1731-1734.	0.8	3
154	Synthesis and Solid State Fluorescence of Tricyanofuran Derivatives Containing a 2-Vinylphenol Fragment. Russian Journal of Organic Chemistry, 2019, 55, 1623-1625.	0.8	3
155	Synthesis of 3-(Dialkylamino)-4-halofuro[3,4-c]pyridin-1(3H)-ones. Russian Journal of Organic Chemistry, 2020, 56, 49-52.	0.8	3
156	Synthesis and Solid State Fluorescence of Malononitrile Trimer Ylidene Derivatives in Aqueous Medium under Ultrasonication. Russian Journal of Organic Chemistry, 2021, 57, 1063-1067.	0.8	3
157	Reaction of 2-Chloropyridine-3,4-dicarbonitrile with Anilines. Synthesis of 2-(Arylamino)pyridine-3,4-dicarbonitriles. Russian Journal of Organic Chemistry, 2021, 57, 1361-1364.	0.8	3
158	Synthesis and Luminescence Spectral Properties of New Cyano-Substituted 2,2′-Bipyridine Derivatives. Russian Journal of Organic Chemistry, 2021, 57, 1961-1967.	0.8	3
159	Multipass large-aperture mirror system for high-resolution spectroscopy. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2000, 67, 900.	0.4	2
160	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1357-1358.	0.8	2
161	Synthesis of 1-Amino-3-oxo-2-azabicyclo[3.2.1]octane-4,5,5-tricarbonitriles. Russian Journal of Organic Chemistry, 2001, 37, 1662-1663.	0.8	2
162	Airborne detection of natural gas leaks from transmission pipelines by using a laser system operating in visual, near-IR, and mid-IR wavelength bands. , 2006, , .		2

#	Article	IF	CITATIONS
163	Hydrolysis of 6,6-dimethyl-4,8-dioxo-5,7-dioxaspiro[2.5]octane-1,1,2,2-tetracarbonitrile. Russian Journal of Organic Chemistry, 2007, 43, 1842-1845.	0.8	2
164	Reaction of 5,5-dialkyl-2-halo-6-hydroxy-5,6-dihydro-1H-pyridine-3,4,4-tricarbonitriles with alcohols. Russian Journal of Organic Chemistry, 2009, 45, 1423-1425.	0.8	2
165	Reaction of 5,5-dialkyl-2-halo-6-hydroxy-5,6-dihydro-1H-pyridine-3,4,4-tricarbonitriles with Morpholine. Russian Journal of Organic Chemistry, 2009, 45, 1541-1545.	0.8	2
166	Synthesis of 3-amino-8-hydroxy-2-methyl-1,6-dioxo-2,7-diazaspiro[4.4]non-3-ene-4-carbonitriles. Russian Journal of Organic Chemistry, 2015, 51, 1189-1190.	0.8	2
167	Synthesis of 9-alkyl-8-methoxy-8-methyl-1,3,6-trioxo-2,7-diazaspiro[4.4]nonane-4-carbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1606-1609.	0.8	2
168	Synthesis of photochromic maleimides containing dithienylethene and azobenzene fragments. Russian Journal of Organic Chemistry, 2017, 53, 141-143.	0.8	2
169	Transformations of 3,3,4-tricyano-3,4-dihydro-2H-pyran-4-carboxamides. Synthesis of pyrano[3,4-c]pyrrole derivatives. Russian Journal of Organic Chemistry, 2017, 53, 1030-1035.	0.8	2
170	Selective quasi-hydrolysis of cyano group in 6-hydroxypiperidine-3,4,4-tricarbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 1828-1832.	0.8	2
171	Synthesis of 3-Arylcyclopropane-1,1,2,2-tetracarbonitriles under Micellar Catalysis. Russian Journal of Organic Chemistry, 2018, 54, 1839-1841.	0.8	2
172	Ultrasound-Assisted Synthesis of 5H-Chromeno[2,3-b]pyridine Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 1179-1183.	0.8	2
173	Synthesis of 2-Hydrazinylpyridine-3,4-dicarbonitriles and Their Reaction with Salicylaldehyde Derivatives. Russian Journal of Organic Chemistry, 2018, 54, 873-877.	0.8	2
174	Synthesis of pyrrolo[3,4-c]pyridine-1,3-diones (5-azaphthalimides) (microreview). Chemistry of Heterocyclic Compounds, 2020, 56, 518-520.	1.2	2
175	Synthesis of 3-R-Sulfanyl-5-amino-1-phenyl-1H-pyrazole-4-Carbonitriles. Russian Journal of Organic Chemistry, 2020, 56, 177-180.	0.8	2
176	Directed Synthesis of Regioisomeric Monoarylâ€Substituted Pyridines Containing a Tricyanobutadiene Fragment and Study on Their Optical Properties. ChemistrySelect, 2021, 6, 5552-5558.	1.5	2
177	Novel "turn-on―fluorescent sensors for silver (I) based on the nicotinonitriles, containing a tricyanobutadiene moiety. Tetrahedron Letters, 2022, , 153819.	1.4	2
178	<title>New vibrostable multipass matrix system for TDLAS</title> ., 1999, 3758, 255.		1
179	Synthesis of Substituted Cyclopentenes by Reaction of Acrolein with \hat{l}^2 , \hat{l}^2 , \hat{l}^3 , \hat{l}^3 -Tetracyanoalkanones. Russian Journal of Organic Chemistry, 2001, 37, 742-744.	0.8	1
180	Reactivity of $1,1,2,2$ -tetracyano-3-(2,2-dimethylhydrazino)cyclopentanes Toward Amines. Russian Journal of General Chemistry, 2002, 72, 909-911.	0.8	1

#	Article	IF	CITATIONS
181	Decyanation of 5-Alkyl-6-aryl-4-oxocyclohexane-1,1,2,2-tetracarbonitriles. Russian Journal of Organic Chemistry, 2002, 38, 1068-1069.	0.8	1
182	Reactions of pregnenolone and 16-dehydropregnenolone acetate with tetracyanoethylene. Russian Journal of Organic Chemistry, 2010, 46, 1090-1091.	0.8	1
183	Targeted synthesis of 2,3-dicyano-2-(2-oxoalkyl)succinates. Russian Journal of Organic Chemistry, 2014, 50, 749-751.	0.8	1
184	Reaction of 8,8-diethyl-6-imino-3-(pentan-3-yl)-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitrile with Ketoximes. Russian Journal of Organic Chemistry, 2015, 51, 1807-1808.	0.8	1
185	Synthesis of 11,11-dialkyl-5-chloro-3,7,9-triazatricyclo-[6.2.1.01,5]undecane-2,4,6,10-tetraones. Russian Journal of Organic Chemistry, 2015, 51, 1813-1814.	0.8	1
186	Synthesis of 3,7,9-triazatricyclo[6.2.1.01,5]undeca-2,4-dienes by reaction of 2-oxa-7-azaspiro[4.4]nona-3,6,8-trienes with sodium hydroxide. Russian Journal of Organic Chemistry, 2016, 52, 1854-1856.	0.8	1
187	Synthesis of polyfunctional glycosyl derivatives of 2,7-dioxabicyclo[3.2.1]octane. Russian Journal of Organic Chemistry, 2016, 52, 1220-1222.	0.8	1
188	New synthesis of 4-alkyl-3-cyanocoumarins. Russian Journal of Organic Chemistry, 2016, 52, 983-986.	0.8	1
189	Acylation of 6-imino-2,7-dioxabicyclo[3.2.1]octane-4,4,5-tricarbonitriles. Russian Journal of Organic Chemistry, 2016, 52, 1522-1524.	0.8	1
190	Synthesis of geminal dinitro derivatives of cycloalka[b]pyridin-2-one. Russian Journal of Organic Chemistry, 2016, 52, 827-829.	0.8	1
191	Synthesis of new 3H-pyrrole derivatives from 3-aryl-2-oxa-7-azaspiro[4.4]nona-3,6,8-trienes. Russian Journal of Organic Chemistry, 2016, 52, 1312-1315.	0.8	1
192	Synthesis of aminium 23,24,24-tricyano- $3\hat{l}^2$ -hydroxy-20-oxo-21-nor- $17\hat{l}^2$ -cholane-5,21-dien-24-ides from tetracyanoethylated pregnenolone. Russian Journal of Organic Chemistry, 2017, 53, 946-949.	0.8	1
193	Iminothiolactone-thiolactam rearrangement in the synthesis of 4-amino-6-thioxo-3,7,9-triazatricyclo-[6.2.1.01,5]undec-4-ene-2,10-diones. Chemistry of Heterocyclic Compounds, 2017, 53, 1045-1049.	1.2	1
194	Three-component synthesis of 2-halo-6-methoxy-5,6-dihydropyridine-3,4,4(1H)-tricarbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 1760-1762.	0.8	1
195	Unexpected cascade transformations in the reaction of aromatic aldehydes with the malononitrile dimer. Synthetic Communications, 2019, 49, 3343-3351.	2.1	1
196	Hydrolysis of 6-Aryl-2-amino-4-(dicyanomethylidene)-3-azabicyclo[3.1.0]hex-2-ene-1,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2019, 55, 1077-1080.	0.8	1
197	Different Directions of the Reaction of 1-(2-Oxocycloalkyl)-ethane-1,1,2,2-tetracarbonitriles with Aqueous Ammonia. Russian Journal of Organic Chemistry, 2019, 55, 456-461.	0.8	1
198	Reaction of Disodium Ethene-1,1-bis(thiolates) with 1,1,2-Trichloroethane. Russian Journal of Organic Chemistry, 2019, 55, 1979-1981.	0.8	1

#	Article	IF	CITATIONS
199	Synthesis of 4-Amino-6-aryl-2-sulfanylpyridine-3,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2020, 56, 1491-1494.	0.8	1
200	Synthesis of 2,4-Diamino-6-arylpyridine-3,5-dicarbonitriles and Study of Their Optical Properties. Russian Journal of Organic Chemistry, 2020, 56, 1501-1504.	0.8	1
201	Synthesis of 4-Halofuro[3,4-c]pyridin-3(1H)-ones from 2-Halopyridine-3,4-dicarbonitriles. Russian Journal of Organic Chemistry, 2020, 56, 1540-1544.	0.8	1
202	Reaction of Disodium Ethene-1,1-bis(thiolates) with Dibromobutanes. Russian Journal of Organic Chemistry, 2021, 57, 1559-1561.	0.8	1
203	Synthesis of 2-Ylidene-1,3-dithiolanes. Russian Journal of Organic Chemistry, 2020, 56, 1498-1500.	0.8	1
204	Synthesis and Antiproliferative Activity of 2-oxo-1,2-dihydropyridine-3,4-dicarbonitriles. Pharmaceutical Chemistry Journal, 2022, 56, 325-328.	0.8	1
205	<title>Multipass systems with large relative aperture for TDLAS</title> ., 1999, 3758, 251.		0
206	Title is missing!. Russian Journal of General Chemistry, 2001, 71, 1491-1492.	0.8	0
207	Decyanation of 5-Alkyl-6-aryl-4-oxocyclohexane-1,1,2,2-tetracarbonitriles ChemInform, 2003, 34, no.	0.0	0
208	Reaction of Tetracyanoethylene with 2-Substituted Cyclohexanones ChemInform, 2003, 34, no.	0.0	0
209	<title>Tunable single-frequency diode laser source for gas-analysis applications</title> ., 2004, 5381, 26.		0
210	Reaction of 2,2,3,3-Tetracyanocyclopropanecarboxylic Acid with lodides. Synthesis of 3-Cyano-4-dicyanomethylidene-5-oxo-4,5-dihydro-1H-pyrrol-2-olates ChemInform, 2005, 36, no.	0.0	0
211	Synthesis of 5-oxoalkane-2,2,3,3-tetracarbonitriles. Russian Journal of Organic Chemistry, 2015, 51, 936-939.	0.8	0
212	Synthesis of 3-amino-8-hydroxy-1,6-dioxo-4-cyano-2,7-diazaspiro[4.4]non-3-en-2-ides ammonium salts. Russian Journal of Organic Chemistry, 2016, 52, 1143-1147.	0.8	0
213	Synthesis of 4-halo-3-(phenylamino)furo[3,4-c]pyridin-1(3H)-ones. Russian Journal of Organic Chemistry, 2017, 53, 1660-1663.	0.8	0
214	N-acylimino-substituted 2-oxa-7-azaspiro [4.4] nona-3,6,8-trienes in the synthesis of 3-(1H-1,2,4-triazol-3-yl)-3H-pyrrole-4-carbonitriles. Russian Journal of Organic Chemistry, 2017, 53, 1696-1700.	0.8	0
215	One-Pot Synthesis of 6-Alkyl-4-amino-2-bromopyridine-3,5-dicarbonitriles. Russian Journal of Organic Chemistry, 2018, 54, 1106-1108.	0.8	0
216	New approach to the synthesis of 2,3-dihydrofuro [2,3-b] pyridine derivatives: double reduction and double heterocyclization of 2-(3-cyano-5-hydroxy-1,5-dihydro-2H-pyrrol-2-ylidene) malononitriles in the presence of sodium borohydride. Chemistry of Heterocyclic Compounds, 2018, 54, 447-450.	1.2	0

#	Article	IF	CITATIONS
217	Synthesis of 2,7-Diazabicyclo[3.2.1]oct-3-ene Derivatives. Russian Journal of Organic Chemistry, 2019, 55, 1009-1012.	0.8	O
218	Reaction of 2-Amino-6-aryl-4-(dicyanomethyl)-3-azabicyclo[3.1.0]hex-2-ene-1,5-dicarbonitriles with Primary and Secondary Amines. Russian Journal of Organic Chemistry, 2020, 56, 1432-1437.	0.8	0
219	Antiproliferative Activity Missing in 6-Substituted Polycarbonitrile Derivatives of 3-Azabicyclo[3.1.0]Hexane. Pharmaceutical Chemistry Journal, 2020, 54, 781-783.	0.8	0
220	Synthesis and Optical Properties of Ethyl 2-Cyano-2-[3,4-dicyanopyridin-2(1H)-ylidene]acetate Derivatives. Russian Journal of Organic Chemistry, 2021, 57, 1103-1108.	0.8	0
221	ĐĐ½Ñ,Đ,Đ;Ñ€Đ¾Đ»Đ,Ñ,,ĐµÑ€Đ°Ñ,Đ,Đ²Đ½Đ°Ñ•Đ°Đ°Ñ,Đ,Đ²Đ½Đ¾ÑÑ,ÑŒ Đ;Ñ€Đ¾Đ,Đ∙Đ²Đ¾ĐĐ½Ñ‹Ñ 2-t 14-17.)°Đ¼Đ,Đ¹ 0.1	/2г⁄4-4< <mark> &</mark>
222	Antiproliferative Activity of 3-Cyanocoumarins and 2-Aminochromeno[2,3-b] Pyridine-3-Carbonitriles, Derivatives of 2-Amino-4H-Chromene-3-Carbonitrile. Pharmaceutical Chemistry Journal, 2021, 55, 644.	0.8	0
223	ĐĐ½Ñ,Đ,Đ¿Ñ€Đ¾Đ»Đ,Ñ,,ĐµÑ€Đ°Ň,Đ,Đ²Đ½Đ°Ñ•Đ°Đ°Ň,Đ,Đ²Đ½Đ¾ÑÑ,ÑŒ N-Đ∙Đ°Đ¼ĐµÑ‰ĐµĐ½Đ½Ñ‹Ñ	2, �∄ Ɗ¸Đʻ	℀⅁℣ⅎ⅁ⅉ⅁℀ⅇ⅁℁