
Clemens Glombitza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2844299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 2015, 349, 420-424.	6.0	376
2	Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proceedings of the United States of America, 2018, 115, 367-372.	3.3	126
3	Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Frontiers in Microbiology, 2015, 6, 846.	1.5	76
4	Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 2020, 370, 1230-1234.	6.0	65
5	Photochemical Preparation of Highly Functionalized 1-Indanones. Journal of Organic Chemistry, 2004, 69, 7582-7591.	1.7	56
6	Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environmental Microbiology, 2018, 20, 2927-2940.	1.8	50
7	Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Frontiers in Microbiology, 2013, 4, 209.	1.5	47
8	Direct analysis of volatile fatty acids in marine sediment porewater by twoâ€dimensional ion chromatographyâ€mass spectrometry. Limnology and Oceanography: Methods, 2014, 12, 455-468.	1.0	46
9	Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Applied and Environmental Microbiology, 2018, 84, .	1.4	45
10	Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Environmental Microbiology, 2016, 18, 3159-3174.	1.8	42
11	Macrofaunal control of microbial community structure in continental margin sediments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15911-15922.	3.3	40
12	Controls on volatile fatty acid concentrations in marine sediments (Baltic Sea). Geochimica Et Cosmochimica Acta, 2019, 258, 226-241.	1.6	38
13	Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment. ISME Journal, 2021, 15, 833-847.	4.4	38
14	Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and <i>In Situ</i> Geochemistry. Applied and Environmental Microbiology, 2019, 85, .	1.4	37
15	A novel procedure to detect low molecular weight compounds released by alkaline ester cleavage from low maturity coals to assess its feedstock potential for deep microbial life. Organic Geochemistry, 2009, 40, 175-183.	0.9	36
16	Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan. Frontiers in Microbiology, 2016, 7, 1576.	1.5	35
17	500,000 Years of Environmental History in Eastern Anatolia: The PALEOVAN Drilling Project. Scientific Drilling, 0, 14, 18-29.	1.0	34
18	Accessing the Subsurface Biosphere Within Rocks Undergoing Active Lowâ€Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006315.	1.3	27

CLEMENS GLOMBITZA

#	Article	IF	CITATIONS
19	Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels. Organic Geochemistry, 2009, 40, 1063-1073.	0.9	26
20	Microbial abundance in lacustrine sediments: a case study from Lake Van, Turkey. International Journal of Earth Sciences, 2015, 104, 1667-1677.	0.9	26
21	Organic matter mineralization in modern and ancient ferruginous sediments. Nature Communications, 2021, 12, 2216.	5.8	25
22	D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Frontiers in Microbiology, 2018, 9, 967.	1.5	23
23	Hydrogen Utilization Potential in Subsurface Sediments. Frontiers in Microbiology, 2016, 7, 8.	1.5	21
24	Active microbial sulfate reduction in fluids of serpentinizing peridotites of the continental subsurface. Communications Earth & Environment, 2021, 2, .	2.6	21
25	Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere. Nature Communications, 2022, 13, 312.	5.8	21
26	A System for Incubations at High Gas Partial Pressure. Frontiers in Microbiology, 2012, 3, 25.	1.5	17
27	Differences in bitumen and kerogen-bound fatty acid fractions during diagenesis and early catagenesis in a maturity series of New Zealand coals. International Journal of Coal Geology, 2016, 153, 28-36.	1.9	15
28	IODP Expedition 337: Deep Coalbed Biosphere off Shimokita – Microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. Scientific Drilling, 0, 21, 17-28.	1.0	15
29	Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 2019, 10, 1729.	1.5	11
30	Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Communications Biology, 2021, 4, 1006.	2.0	10
31	Response to substrate limitation by a marine sulfate-reducing bacterium. ISME Journal, 2022, 16, 200-210.	4.4	7
32	Structural insights from boron tribromide ether cleavage into lignites and low maturity coals from the New Zealand Coal Band. Organic Geochemistry, 2011, 42, 228-236.	0.9	6
33	Photochemical Preparation of Highly Functionalized 1-Indanones ChemInform, 2005, 36, no.	0.1	Ο