
Cédric Chauvierre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2843907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling MedTech Translation in Academia: Redefining Value Proposition with Updated Regulations. Advanced Healthcare Materials, 2021, 10, 2001237.	3.9	10
2	P-selectin targeting polysaccharide-based nanogels for miRNA delivery. International Journal of Pharmaceutics, 2021, 597, 120302.	2.6	11
3	Fucoidan-functionalized polysaccharide submicroparticles loaded with alteplase for efficient targeted thrombolytic therapy. Biomaterials, 2021, 277, 121102.	5.7	16
4	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	1.3	17
5	Nanomedicine progress in thrombolytic therapy. Biomaterials, 2020, 258, 120297.	5.7	62
6	Gd(DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydrate Polymers, 2020, 245, 116457.	5.1	12
7	Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. International Journal of Pharmaceutics, 2020, 577, 119041.	2.6	24
8	Nanostructured lipid carriers accumulate in atherosclerotic plaques of ApoEâ^'/â^' mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 25, 102157.	1.7	7
9	Core-Shell Polymer-Based Nanoparticles Deliver miR-155-5p to Endothelial Cells. Molecular Therapy - Nucleic Acids, 2019, 17, 210-222.	2.3	16
10	Pharmaceutical Development and Safety Evaluation of a GMP-Grade Fucoidan for Molecular Diagnosis of Cardiovascular Diseases. Marine Drugs, 2019, 17, 699.	2.2	22
11	Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials, 2019, 194, 139-150.	5.7	50
12	Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials, 2018, 156, 204-216.	5.7	119
13	Erythrocyte-Inspired Discoidal Polymeric Nanoconstructs Carrying Tissue Plasminogen Activator for the Enhanced Lysis of Blood Clots. ACS Nano, 2018, 12, 12224-12237.	7.3	64
14	Comparative analysis of nanosystems' effects on human endothelial and monocytic cell functions. Nanotoxicology, 2018, 12, 957-974.	1.6	6
15	From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovascular Research, 2018, 114, 1714-1727.	1.8	63
16	Thrombosis Treatment: Development of Polymer Microcapsules Functionalized with Fucoidan to Target Pâ€ 5 electin Overexpressed in Cardiovascular Diseases (Adv. Healthcare Mater. 4/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	7
17	Development of Polymer Microcapsules Functionalized with Fucoidan to Target Pâ€Selectin Overexpressed in Cardiovascular Diseases. Advanced Healthcare Materials, 2017, 6, 1601200.	3.9	34

2

2.2 88

Cédric Chauvierre

#	Article	IF	CITATIONS
19	Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum. Marine Drugs, 2016, 14, 185.	2.2	32
20	NANOTHERANOSTICS IN CARDIOVASCULAR DISEASES. , 2016, , 223-265.		1
21	Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine, 2016, 11, 597-616.	1.7	57
22	Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine, 2015, 10, 73-87.	1.7	80
23	Combining magnetic nanoparticles with cell derived microvesicles for drug loading and targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 645-655.	1.7	118
24	Evaluation of Functionalized Polysaccharide Microparticles Dosimetry for SPECT Imaging Based on Biodistribution Data of Rats. Molecular Imaging and Biology, 2015, 17, 504-511.	1.3	6
25	Nanomedicine as a strategy to fight thrombotic diseases. Future Science OA, 2015, 1, FSO46.	0.9	32
26	Nanomedicine for the molecular diagnosis of cardiovascular pathologies. Biochemical and Biophysical Research Communications, 2015, 468, 476-484.	1.0	12
27	The European project NanoAthero to fight cardiovascular diseases using nanotechnologies. Nanomedicine, 2015, 10, 3391-3400.	1.7	10
28	Abdominal Aortic Aneurysms Targeted by Functionalized Polysaccharide Microparticles: a new Tool for SPECT Imaging. Theranostics, 2014, 4, 592-603.	4.6	32
29	Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction. Marine Drugs, 2014, 12, 4851-4867.	2.2	56
30	Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomaterialia, 2014, 10, 3535-3545.	4.1	30
31	Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies. Theranostics, 2014, 4, 579-591.	4.6	49
32	Artificial oxygen carrier based on polysaccharides–poly(alkylcyanoacrylates) nanoparticle templates. Biomaterials, 2010, 31, 6069-6074.	5.7	33
33	Cytoglobin conformations and disulfide bond formation. FEBS Journal, 2010, 277, 2696-2704.	2.2	46
34	Cytoglobin conformations and disulfide bond formation. FEBS Journal, 2010, 277, 2696-2704.	2.2	39
35	Neuroglobin and Prion Cellular Localization: Investigation of a Potential Interaction. Journal of Molecular Biology, 2009, 388, 968-977.	2.0	22
36	Octamers and nanoparticles as hemoglobin based blood substitutes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1448-1453.	1.1	18

CéDRIC CHAUVIERRE

#	Article	IF	CITATIONS
37	Enhancing the tolerance of poly(isobutylcyanoacrylate) nanoparticles with a modular surface design. International Journal of Pharmaceutics, 2007, 338, 327-332.	2.6	24
38	Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials, 2005, 26, 5075-5084.	5.7	121
39	Evaluation of the surface properties of dextran-coated poly(isobutylcyanoacrylate) nanoparticles by spin-labelling coupled with electron resonance spectroscopy. Colloid and Polymer Science, 2004, 282, 1016-1025.	1.0	25
40	A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties. Colloid and Polymer Science, 2004, 282, 1097-1104.	1.0	37
41	Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier. Biomaterials, 2004, 25, 3081-3086.	5.7	76
42	Title is missing!. Journal of Nanoparticle Research, 2003, 5, 365-371.	0.8	18
43	Novel Polysaccharide-Decorated Poly(Isobutyl Cyanoacrylate) Nanoparticles. Pharmaceutical Research, 2003, 20, 1786-1793.	1.7	100
44	Radical Emulsion Polymerization of Alkylcyanoacrylates Initiated by the Redox System Dextranâ^'Cerium(IV) under Acidic Aqueous Conditions. Macromolecules, 2003, 36, 6018-6027.	2.2	79