

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2843453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal variations of mass absorption efficiency of elemental carbon in PM2.5 in urban Guangzhou of South China. Journal of Environmental Sciences, 2023, 133, 83-92.	6.1	1
2	Environmental effects of China's coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. Atmospheric Research, 2022, 268, 106015.	4.1	10
3	Source apportionment of carbonaceous aerosols using hourly data and implications for reducing PM2.5 in the Pearl River Delta region of South China. Environmental Research, 2022, 210, 112960.	7.5	16
4	Quantifying the relative contributions of aqueous phase and photochemical processes to water-soluble organic carbon formation in winter in a megacity of South China. Chemosphere, 2022, 300, 134598.	8.2	7
5	Secondary organic aerosol formation and source contributions over east China in summertime. Environmental Pollution, 2022, 306, 119383.	7.5	11
6	Direct and indirect effects and feedbacks of biomass burning aerosols over Mainland Southeast Asia and South China in springtime. Science of the Total Environment, 2022, 842, 156949.	8.0	11
7	Strong light scattering of highly oxygenated organic aerosols impacts significantly on visibility degradation. Atmospheric Chemistry and Physics, 2022, 22, 7713-7726.	4.9	10
8	Effect of source variation on the size and mixing state of black carbon aerosol in urban Beijing from 2013 to 2019: Implication on light absorption. Environmental Pollution, 2021, 270, 116089.	7.5	17
9	Quantifying the relative importance of major tracers for fine particles released from biofuel combustion in households in the rural North China Plain. Environmental Pollution, 2021, 268, 115764.	7.5	6
10	Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities. Science of the Total Environment, 2021, 762, 143075.	8.0	34
11	Spectral absorption properties of organic carbon aerosol during a polluted winter in Beijing, China. Science of the Total Environment, 2021, 755, 142600.	8.0	13
12	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	12.9	139
13	Size-resolved refractive index of scattering aerosols in urban Beijing: A seasonal comparison. Aerosol Science and Technology, 2021, 55, 1070-1083.	3.1	1
14	Variation in PM2.5 sources in central North China Plain during 2017–2019: Response to mitigation strategies. Journal of Environmental Management, 2021, 288, 112370.	7.8	22
15	Impact of deliquescence of aerosol on mass absorption efficiency of elemental carbon in fine particles in urban Guangzhou in south China. Atmospheric Environment, 2021, 256, 118476.	4.1	7
16	Reduction of air pollutants and associated mortality during and after the COVID-19 lockdown in China: Impacts and implications. Environmental Research, 2021, 200, 111457.	7.5	12
17	Impact of aerosol liquid water content and its size distribution on hygroscopic growth factor in urban Guangzhou of South China. Science of the Total Environment, 2021, 789, 148055.	8.0	7
18	Effects of chemical compositions in fine particles and their identified sources on hygroscopic growth factor during dry season in urban Guangzhou of South China. Science of the Total Environment, 2021, 801, 149749.	8.0	11

#	Article	IF	CITATIONS
19	Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition, 2020, 60, 1025-1037.	10.3	73
20	Evaluation of the IMPROVE formulas based on Mie model in the calculation of particle scattering coefficient in an urban atmosphere. Atmospheric Environment, 2020, 222, 117116.	4.1	6
21	High mass absorption efficiency of carbonaceous aerosols during the biomass burning season in Chiang Mai of northern Thailand. Atmospheric Environment, 2020, 240, 117821.	4.1	18
22	Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China – size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmospheric Chemistry and Physics, 2020, 20, 6435-6453.	4.9	29
23	Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China. Atmospheric Chemistry and Physics, 2019, 19, 8471-8490.	4.9	30
24	Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. Environmental Pollution, 2019, 252, 493-500.	7.5	31
25	Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China. Atmospheric Environment, 2019, 212, 54-64.	4.1	43
26	Five-year observation of aerosol optical properties and its radiative effects to planetary boundary layer during air pollution episodes in North China: Intercomparison of a plain site and a mountainous site in Beijing. Science of the Total Environment, 2019, 674, 140-158.	8.0	38
27	Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China. Science of the Total Environment, 2019, 649, 1045-1053.	8.0	67
28	Association between the full range of birth weight and childhood weight status: by gestational age. European Journal of Clinical Nutrition, 2019, 73, 1141-1148.	2.9	4
29	Characteristics of Mass Absorption Efficiency of Elemental Carbon in Urban Chengdu, Southwest China: Implication for the Coating Effects on Aerosol Absorption. Aerosol Science and Engineering, 2018, 2, 33-41.	1.9	3
30	Ambient particulate matter air pollution associated with acute respiratory distress syndrome in Guangzhou, China. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 392-399.	3.9	53
31	Saccharides in summer and winter PM2.5 over Xi'an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2.5. Atmospheric Research, 2018, 214, 410-417.	4.1	42
32	The impact of biomass burning on total suspended particulate matter in the southeastern Tibetan Plateau. Atmospheric Environment, 2018, 193, 33-39.	4.1	4
33	Observational evidence of cloud processes contributing to daytime elevated nitrate in an urban atmosphere. Atmospheric Environment, 2018, 186, 209-215.	4.1	32
34	Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and Archean atmospheres. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8541-8546.	7.1	37
35	Shipping pollution emission associated with increased cardiovascular mortality: A time series study in Guangzhou, China. Environmental Pollution, 2018, 241, 862-868.	7.5	46
36	Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China. Science of the Total Environment, 2018, 642, 1008-1019.	8.0	20

#	Article	IF	CITATIONS
37	Biomass burning tracers in rural and urban ultrafine particles in Xi'an, China. Atmospheric Pollution Research, 2017, 8, 614-618.	3.8	23
38	Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou. Science of the Total Environment, 2017, 587-588, 240-247.	8.0	22
39	Vertically uniform formation pathways of tropospheric sulfate aerosols in East China detected from triple stable oxygen and radiogenic sulfur isotopes. Geophysical Research Letters, 2017, 44, 5187-5196.	4.0	20
40	Investigation of hygroscopic growth effect on aerosol scattering coefficient at a rural site in the southern North China Plain. Science of the Total Environment, 2017, 599-600, 76-84.	8.0	29
41	Observations of biomass burning tracers in PM2.5 at two megacities in North China during 2014 APEC summit. Atmospheric Environment, 2017, 169, 54-64.	4.1	24
42	Comparison of aerosol and cloud condensation nuclei between wet and dry seasons in Guangzhou, southern China. Science of the Total Environment, 2017, 607-608, 11-22.	8.0	8
43	Methanol Extracted Brown Carbon in PM2.5 Over Xi'an, China: Seasonal Variation of Optical Properties and Sources Identification. Aerosol Science and Engineering, 2017, 1, 57-65.	1.9	39
44	Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmospheric Research, 2017, 183, 322-330.	4.1	69
45	Source apportionment of PM2.5 at urban and suburban areas of the Pearl River Delta region, south China - With emphasis on ship emissions. Science of the Total Environment, 2017, 574, 1559-1570.	8.0	182
46	Size distribution and source of black carbon aerosol in urban Beijing during winter haze episodes. Atmospheric Chemistry and Physics, 2017, 17, 7965-7975.	4.9	53
47	A review of current knowledge concerning PM _{2. 5} chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics, 2017, 17, 9485-9518.	4.9	280
48	Variations of Chemical Composition and Source Apportionment of PM2.5 during Winter Haze Episodes in Beijing. Aerosol and Air Quality Research, 2017, 17, 2791-2803.	2.1	25
49	High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China. International Journal of Environmental Research and Public Health, 2016, 13, 1202.	2.6	11
50	Unexpected high ³⁵ S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia. Geophysical Research Letters, 2016, 43, 2315-2322.	4.0	13
51	Mortality burden of ambient fine particulate air pollution in six Chinese cities: Results from the Pearl River Delta study. Environment International, 2016, 96, 91-97.	10.0	156
52	Chemical and optical characteristics of atmospheric aerosols in Beijing during the Asia-Pacific Economic Cooperation China 2014. Atmospheric Environment, 2016, 144, 8-16.	4.1	26
53	Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Science of the Total Environment, 2016, 573, 1031-1040.	8.0	156
54	Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants. Atmospheric Chemistry and Physics, 2016, 16, 9221-9234.	4.9	62

#	Article	IF	CITATIONS
55	Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension. Hypertension, 2016, 68, 62-70.	2.7	239
56	Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China. Environmental Pollution, 2016, 208, 758-766.	7.5	187
57	Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis — a case study in Beijing, China. Science of the Total Environment, 2016, 543, 326-335.	8.0	75
58	The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environmental Pollution, 2016, 211, 38-47.	7.5	179
59	Differentiating the effects of characteristics of PM pollution on mortality from ischemic and hemorrhagic strokes. International Journal of Hygiene and Environmental Health, 2016, 219, 204-211.	4.3	70
60	Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model. Atmospheric Environment, 2016, 124, 186-198.	4.1	53
61	Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013. Atmospheric Environment, 2016, 124, 217-223.	4.1	62
62	Evolution of aerosol vertical distribution during particulate pollution events in Shanghai. Journal of Meteorological Research, 2015, 29, 385-399.	2.4	15
63	Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing. Particuology, 2015, 18, 144-154.	3.6	52
64	Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmospheric Environment, 2015, 123, 315-326.	4.1	76
65	Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. Environmental Research Letters, 2015, 10, 034015.	5.2	26
66	Aerosol chemical composition and light scattering during a winter season in Beijing. Atmospheric Environment, 2015, 110, 36-44.	4.1	74
67	Comparison of ionic and carbonaceous compositions of PM2.5 in 2009 and 2012 in Shanghai, China. Science of the Total Environment, 2015, 536, 695-703.	8.0	48
68	Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region. Atmospheric Environment, 2015, 102, 290-301.	4.1	62
69	Control of PM 2.5 in Guangzhou during the 16th Asian Games period: Implication for hazy weather prevention. Science of the Total Environment, 2015, 508, 57-66.	8.0	45
70	Inter-Annual Variations of Cloud and Precipitation and their Possible Relationships with Surface Aerosols in Shanghai. Aerosol and Air Quality Research, 2015, 15, 1367-1379.	2.1	4
71	Spectral Light Absorption of Ambient Aerosols in Urban Beijing during Summer: An Intercomparison of Measurements from a Range of Instruments. Aerosol and Air Quality Research, 2015, 15, 1178-1187.	2.1	18
72	Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China. Atmospheric Environment, 2014, 95, 552-562.	4.1	67

#	Article	IF	CITATIONS
73	Characteristics and relevant remote sources of black carbon aerosol in Shanghai. Atmospheric Research, 2014, 135-136, 159-171.	4.1	38
74	Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou — the largest megacity in South China. Atmospheric Research, 2014, 135-136, 48-58.	4.1	158
75	Photochemical properties and source of pollutants during continuous pollution episodes in Beijing, October, 2011. Journal of Environmental Sciences, 2014, 26, 44-53.	6.1	14
76	Optical properties and chemical composition of PM 2.5 in Shanghai in the spring of 2012. Particuology, 2014, 13, 52-59.	3.6	24
77	Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study. Atmospheric Chemistry and Physics, 2014, 14, 11353-11365.	4.9	34
78	Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate. Atmospheric Chemistry and Physics, 2014, 14, 11571-11585.	4.9	49
79	Variations of cloud condensation nuclei (CCN) and aerosol activity during fog–haze episode: a case study from Shanghai. Atmospheric Chemistry and Physics, 2014, 14, 12499-12512.	4.9	38
80	An alternative method for estimating hygroscopic growth factor of aerosol light-scattering coefficient: a case study in an urban area of Guangzhou, South China. Atmospheric Chemistry and Physics, 2014, 14, 7631-7644.	4.9	26
81	PM _{2.5} pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 2014, 14, 8679-8699.	4.9	309
82	Ammonium deficiency caused by heterogeneous reactions during a super Asian dust episode. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6803-6817.	3.3	17
83	Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmospheric Pollution Research, 2014, 5, 361-370.	3.8	36
84	Study of Aerosol Optical Properties Based on Ground Measurements over Sichuan Basin, China. Aerosol and Air Quality Research, 2014, 14, 905-915.	2.1	27
85	Chemical characteristics of PM2.5 during dust storms and air pollution events in Chengdu, China. Particuology, 2013, 11, 70-77.	3.6	56
86	Variation trends and influencing factors of total gaseous mercury inÂthe Pearl River Delta—A highly industrialised region in South ChinaÂinfluenced by seasonal monsoons. Atmospheric Environment, 2013, 77, 757-766.	4.1	46
87	Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research, 2013, 122, 270-283.	4.1	236
88	Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai. Atmospheric Environment, 2013, 69, 354-361.	4.1	35
89	Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. Advances in Atmospheric Sciences, 2013, 30, 1070-1084.	4.3	93
90	Characteristics of fine particulate non-polar organic compounds in Guangzhou during the 16th Asian Games: Effectiveness of air pollution controls. Atmospheric Environment, 2013, 76, 94-101.	4.1	61

#	Article	IF	CITATIONS
91	Impact of relative humidity and particles number size distribution on aerosol light extinction in the urban area of Guangzhou. Atmospheric Chemistry and Physics, 2013, 13, 1115-1128.	4.9	43
92	Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 819-835.	4.9	118
93	Chemical characterization and source apportionment of PM _{2.5} in Beijing: seasonal perspective. Atmospheric Chemistry and Physics, 2013, 13, 7053-7074.	4.9	1,063
94	Long-Term Trends in Visibility and at Chengdu, China. PLoS ONE, 2013, 8, e68894.	2.5	32
95	Influences of Commuting Mode, Air Conditioning Mode and Meteorological Parameters on Fine Particle (PM2.5) Exposure Levels in Traffic Microenvironments. Aerosol and Air Quality Research, 2013, 13, 709-720.	2.1	54
96	Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmospheric Research, 2012, 118, 222-231.	4.1	88
97	Measurements of surface aerosol optical properties in winter of Shanghai. Atmospheric Research, 2012, 109-110, 25-35.	4.1	65
98	Reconstructed light extinction coefficients using chemical compositions of PM2.5 in winter in Urban Guangzhou, China. Advances in Atmospheric Sciences, 2012, 29, 359-368.	4.3	37
99	Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Science of the Total Environment, 2012, 431, 68-77.	8.0	93
100	Characterization of Atmospheric Organic and Elemental Carbon of PM2.5 in a Typical Semi-Arid Area of Northeastern China. Aerosol and Air Quality Research, 2012, 12, 792-802.	2.1	56
101	Regression Analyses between Recent Air Quality and Visibility Changes in Megacities at Four Haze Regions in China. Aerosol and Air Quality Research, 2012, 12, 1049-1061.	2.1	50
102	Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric Environment, 2011, 45, 1359-1363.	4.1	149
103	Chemical properties and origin of dust aerosols in Beijing during springtime. Particuology, 2009, 7, 61-67.	3.6	48
104	Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology, 2009, 7, 68-75.	3.6	129