List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2843248/publications.pdf Version: 2024-02-01

		36	94
370	236,845	191	356
papers	citations	h-index	g-index
413	413	413	191462
all docs	docs citations	times ranked	citing authors

CAD CETZ

#	Article	IF	CITATIONS
1	Integrative genomics viewer. Nature Biotechnology, 2011, 29, 24-26.	9.4	11,708
2	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
3	MicroRNA expression profiles classify human cancers. Nature, 2005, 435, 834-838.	13.7	8,931
4	The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 2013, 45, 580-585.	9.4	6,815
5	The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483, 603-607.	13.7	6,473
6	Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17, 98-110.	7.7	6,138
7	Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications, 2013, 4, 2612.	5.8	5,788
8	Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499, 214-218.	13.7	4,761
9	The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 2015, 348, 648-660.	6.0	4,659
10	Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 2013, 368, 2059-2074.	13.9	4,139
11	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
12	Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology, 2013, 31, 213-219.	9.4	3,934
13	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
14	Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. New England Journal of Medicine, 2014, 371, 2488-2498.	13.9	3,474
15	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	13.7	3,331
16	Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell, 2015, 160, 48-61.	13.5	2,948
17	Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455, 1069-1075.	13.7	2,694
18	Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505, 495-501.	13.7	2,586

#	Article	IF	CITATIONS
19	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
20	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	13.5	2,562
21	GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology, 2011, 12, R41.	3.8	2,546
22	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
23	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	13.5	2,318
24	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
25	A Landscape of Driver Mutations in Melanoma. Cell, 2012, 150, 251-263.	13.5	2,247
26	The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science, 2011, 333, 1157-1160.	6.0	2,225
27	Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019, 569, 503-508.	13.7	2,149
28	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
29	An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547, 217-221.	13.7	2,112
30	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
31	The repertoire of mutational signatures in human cancer. Nature, 2020, 578, 94-101.	13.7	2,104
32	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	13.5	1,794
33	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	13.5	1,742
34	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718
35	Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 2012, 30, 413-421.	9.4	1,710
36	Prospective Derivation of a Living Organoid Biobank of Colorectal Cancer Patients. Cell, 2015, 161, 933-945.	13.5	1,710

#	Article	IF	CITATIONS
37	Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell, 2016, 164, 550-563.	13.5	1,695
38	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
39	Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45, 1134-1140.	9.4	1,616
40	Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing. Cell, 2012, 150, 1107-1120.	13.5	1,591
41	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	13.5	1,485
42	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428
43	Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 2005, 436, 117-122.	13.7	1,329
44	Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 2012, 44, 685-689.	9.4	1,300
45	Initial genome sequencing and analysis of multiple myeloma. Nature, 2011, 471, 467-472.	13.7	1,288
46	BRAF mutation predicts sensitivity to MEK inhibition. Nature, 2006, 439, 358-362.	13.7	1,264
47	Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 2018, 175, 998-1013.e20.	13.5	1,260
48	Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nature Medicine, 2018, 24, 679-690.	15.2	1,224
49	Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Cell, 2013, 152, 714-726.	13.5	1,202
50	Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics, 2012, 44, 1104-1110.	9.4	1,186
51	The human transcriptome across tissues and individuals. Science, 2015, 348, 660-665.	6.0	1,127
52	The genomic complexity of primary human prostate cancer. Nature, 2011, 470, 214-220.	13.7	1,107
53	Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012, 486, 405-409.	13.7	1,107
54	Punctuated Evolution of Prostate Cancer Genomes. Cell, 2013, 153, 666-677.	13.5	1,107

#	Article	IF	CITATIONS
55	An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nature Genetics, 2013, 45, 970-976.	9.4	1,023
56	<i>SF3B1</i> and Other Novel Cancer Genes in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2011, 365, 2497-2506.	13.9	1,021
57	Characterizing the cancer genome in lung adenocarcinoma. Nature, 2007, 450, 893-898.	13.7	1,020
58	Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews Genetics, 2010, 11, 685-696.	7.7	1,014
59	The genetic landscape of high-risk neuroblastoma. Nature Genetics, 2013, 45, 279-284.	9.4	990
60	Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565, 234-239.	13.7	956
61	Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nature Genetics, 2016, 48, 607-616.	9.4	933
62	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	3.3	927
63	Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in <i>ALK</i> -Rearranged Lung Cancer. Cancer Discovery, 2016, 6, 1118-1133.	7.7	919
64	Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016, 539, 309-313.	13.7	875
65	Toil enables reproducible, open source, big biomedical data analyses. Nature Biotechnology, 2017, 35, 314-316.	9.4	873
66	Mutations driving CLL and their evolution in progression and relapse. Nature, 2015, 526, 525-530.	13.7	868
67	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	9.4	862
68	Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3879-3884.	3.3	853
69	Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell, 2014, 25, 91-101.	7.7	847
70	Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 2015, 47, 106-114.	9.4	830
71	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	7.7	821
72	Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 2014, 345, 216-220.	6.0	808

#	Article	IF	CITATIONS
73	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	2.9	801
74	The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discovery, 2014, 4, 94-109.	7.7	782
75	Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature Medicine, 2016, 22, 262-269.	15.2	768
76	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
77	RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics, 2012, 28, 1530-1532.	1.8	746
78	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	6.0	743
79	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
80	Landscape of genomic alterations in cervical carcinomas. Nature, 2014, 506, 371-375.	13.7	708
81	The evolutionary history of 2,658 cancers. Nature, 2020, 578, 122-128.	13.7	690
82	Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications, 2017, 8, 1136.	5.8	686
83	Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12079-12084.	3.3	685
84	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	2.9	683
85	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	13.7	675
86	Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012, 485, 502-506.	13.7	671
87	Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics, 2013, 45, 478-486.	9.4	671
88	Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports, 2016, 15, 857-865.	2.9	671
89	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	7.7	665
90	Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 2018, 560, 325-330.	13.7	662

#	Article	IF	CITATIONS
91	Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genetics, 2010, 42, 715-721.	9.4	642
92	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	7.7	642
93	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	13.5	620
94	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	2.9	605
95	Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors. Cancer Discovery, 2014, 4, 216-231.	7.7	596
96	Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nature Communications, 2017, 8, 1324.	5.8	584
97	Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nature Biotechnology, 2015, 33, 1152-1158.	9.4	573
98	Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nature Genetics, 2013, 45, 285-289.	9.4	532
99	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	7.7	532
100	Integrative and Comparative Genomic Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas. Clinical Cancer Research, 2015, 21, 632-641.	3.2	525
101	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	2.9	523
102	Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nature Medicine, 2014, 20, 682-688.	15.2	508
103	Somatic <i>ERCC2</i> Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma. Cancer Discovery, 2014, 4, 1140-1153.	7.7	506
104	RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nature Communications, 2015, 6, 6377.	5.8	498
105	Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nature Biotechnology, 2014, 32, 479-484.	9.4	495
106	TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood, 2014, 124, 2705-2712.	0.6	486
107	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
108	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478

#	Article	IF	CITATIONS
109	High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods, 2009, 6, 99-103.	9.0	462
110	Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science, 2018, 360, 331-335.	6.0	461
111	Oncotator: Cancer Variant Annotation Tool. Human Mutation, 2015, 36, E2423-E2429.	1.1	448
112	Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nature Genetics, 2018, 50, 1271-1281.	9.4	438
113	Comprehensive identification of mutational cancer driver genes across 12 tumor types. Scientific Reports, 2013, 3, 2650.	1.6	437
114	Resensitization to Crizotinib by the Lorlatinib <i>ALK</i> Resistance Mutation L1198F. New England Journal of Medicine, 2016, 374, 54-61.	13.9	433
115	Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood, 2016, 127, 869-881.	0.6	429
116	A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nature Genetics, 2017, 49, 1476-1486.	9.4	427
117	Analyses of non-coding somatic drivers in 2,658Âcancer whole genomes. Nature, 2020, 578, 102-111.	13.7	424
118	MAP Kinase Pathway Alterations in <i>BRAF</i> -Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discovery, 2014, 4, 61-68.	7.7	419
119	The Genomic Landscape of Pediatric Ewing Sarcoma. Cancer Discovery, 2014, 4, 1326-1341.	7.7	415
120	Genomic complexity of multiple myeloma and its clinical implications. Nature Reviews Clinical Oncology, 2017, 14, 100-113.	12.5	413
121	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020, 182, 200-225.e35.	13.5	410
122	Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nature Genetics, 2014, 46, 161-165.	9.4	408
123	Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Research, 2013, 41, e67-e67.	6.5	407
124	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	2.9	407
125	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
126	Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 2018, 50, 956-967.	9.4	389

#	Article	IF	CITATIONS
127	RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genetics, 2014, 46, 1264-1266.	9.4	388
128	Polyclonal Secondary <i>FGFR2</i> Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discovery, 2017, 7, 252-263.	7.7	384
129	Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12372-12377.	3.3	383
130	Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine, 2018, 15, e1002654.	3.9	373
131	RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science, 2019, 364, .	6.0	369
132	Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair. Cell, 2016, 164, 538-549.	13.5	363
133	Somatic Mutations Predict Poor Outcome in Patients With Myelodysplastic Syndrome After Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2014, 32, 2691-2698.	0.8	359
134	Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nature Medicine, 2019, 25, 1415-1421.	15.2	359
135	Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5564-73.	3.3	355
136	An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nature Genetics, 2015, 47, 1067-1072.	9.4	354
137	Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nature Genetics, 2016, 48, 600-606.	9.4	352
138	A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. Journal of Clinical Investigation, 2012, 122, 2983-2988.	3.9	347
139	Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Research, 2015, 25, 316-327.	2.4	343
140	Mutational processes shape the landscape of TP53 mutations in human cancer. Nature Genetics, 2018, 50, 1381-1387.	9.4	334
141	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell, 2020, 181, 236-249.	13.5	334
142	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	2.9	333
143	Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nature Neuroscience, 2019, 22, 729-740.	7.1	327
144	Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell, 2021, 39, 509-528.e20.	7.7	327

#	Article	IF	CITATIONS
145	Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene, 2013, 32, 3091-3100.	2.6	324
146	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	2.9	324
147	Locally Disordered Methylation Forms the Basis of Intratumor Methylome Variation in Chronic Lymphocytic Leukemia. Cancer Cell, 2014, 26, 813-825.	7.7	323
148	Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15544-15549.	3.3	317
149	Making sense of cancer genomic data. Genes and Development, 2011, 25, 534-555.	2.7	313
150	Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nature Genetics, 2015, 47, 1047-1055.	9.4	310
151	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423.	7.7	309
152	DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene, 2001, 20, 2225-2234.	2.6	308
153	Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nature Genetics, 2017, 49, 10-16.	9.4	307
154	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	3.9	298
155	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	13.5	296
156	Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer. New England Journal of Medicine, 2014, 371, 1426-1433.	13.9	290
157	PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nature Biotechnology, 2011, 29, 393-396.	9.4	289
158	SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Research, 2018, 28, 581-591.	2.4	288
159	Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood, 2014, 124, 453-462.	0.6	286
160	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications, 2016, 7, 11589.	5.8	285
161	Modeling Genomic Diversity and Tumor Dependency in Malignant Melanoma. Cancer Research, 2008, 68, 664-673.	0.4	275
162	Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nature Genetics, 2013, 45, 1483-1486.	9.4	275

#	Article	IF	CITATIONS
163	Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4834-4839.	3.3	273
164	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	13.5	273
165	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
166	Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genetics, 2011, 43, 964-968.	9.4	270
167	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	7.7	270
168	Recurrent and functional regulatory mutations in breast cancer. Nature, 2017, 547, 55-60.	13.7	269
169	Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas. Clinical Cancer Research, 2009, 15, 1417-1427.	3.2	266
170	Clinical Acquired Resistance to RAF Inhibitor Combinations in <i>BRAF</i> -Mutant Colorectal Cancer through MAPK Pathway Alterations. Cancer Discovery, 2015, 5, 358-367.	7.7	265
171	Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology, 2013, 58, 1693-1702.	3.6	264
172	Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 2021, 184, 2239-2254.e39.	13.5	260
173	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	13.5	258
174	Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nature Biotechnology, 2014, 32, 644-652.	9.4	257
175	Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discovery, 2018, 8, 1096-1111.	7.7	256
176	Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. Journal of Hepatology, 2018, 68, 959-969.	1.8	254
177	TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion–Positive Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2019, 9, 1064-1079.	7.7	254
178	WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature, 2019, 568, 551-556.	13.7	253
179	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	6.0	252
180	Integrative analysis of the melanoma transcriptome. Genome Research, 2010, 20, 413-427.	2.4	248

#	Article	IF	CITATIONS
181	Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of <i>ERBB2</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14476-14481.	3.3	246
182	Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell, 2014, 156, 1298-1311.	13.5	241
183	Temporal Dissection of Tumorigenesis in Primary Cancers. Cancer Discovery, 2011, 1, 137-143.	7.7	240
184	Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell, 2021, 184, 5031-5052.e26.	13.5	236
185	ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics, 2011, 27, 2601-2602.	1.8	235
186	The genomic landscape of juvenile myelomonocytic leukemia. Nature Genetics, 2015, 47, 1326-1333.	9.4	233
187	Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. Journal of Clinical Investigation, 2009, 119, 1727-1740.	3.9	230
188	Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell, 2019, 36, 369-384.e13.	7.7	224
189	Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nature Communications, 2015, 6, 8866.	5.8	223
190	PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nature Immunology, 2019, 20, 1231-1243.	7.0	217
191	Identification of the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor PTEN. Cancer Cell, 2007, 11, 555-569.	7.7	214
192	Cell type–specific genetic regulation of gene expression across human tissues. Science, 2020, 369, .	6.0	210
193	Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nature Cancer, 2020, 1, 493-506.	5.7	209
194	High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnology, 2011, 29, 1109-1113.	9.4	204
195	Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Research, 2003, 63, 6613-25.	0.4	196
196	Comprehensive assessment of cancer missense mutation clustering in protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5486-95.	3.3	195
197	Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Research, 2014, 24, 1053-1063.	2.4	191
198	KDM4A Lysine Demethylase Induces Site-Specific Copy Gain and Rereplication of Regions Amplified in Tumors. Cell, 2013, 154, 541-555.	13.5	189

#	Article	IF	CITATIONS
199	Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell, 2021, 39, 361-379.e16.	7.7	189
200	Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor <i>MYBL1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8188-8193.	3.3	188
201	Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell, 2018, 34, 242-255.e5.	7.7	185
202	Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. Journal of the National Cancer Institute, 2016, 108, djv310.	3.0	182
203	Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science, 2022, 376, eabl4290.	6.0	180
204	Integrative Analysis Reveals an Outcome-Associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B Cell Lymphoma. Cancer Cell, 2012, 22, 359-372.	7.7	179
205	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	2.9	177
206	Integrative and Comparative Genomic Analysis of Lung Squamous Cell Carcinomas in East Asian Patients. Journal of Clinical Oncology, 2014, 32, 121-128.	0.8	176
207	The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nature Genetics, 2016, 48, 848-855.	9.4	174
208	Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Cancer Cell, 2016, 30, 750-763.	7.7	173
209	High-throughput Phenotyping of Lung Cancer Somatic Mutations. Cancer Cell, 2016, 30, 214-228.	7.7	171
210	A proteogenomic portrait of lung squamous cell carcinoma. Cell, 2021, 184, 4348-4371.e40.	13.5	170
211	A Pan-Cancer Analysis of Transcriptome Changes Associated with Somatic Mutations in U2AF1 Reveals Commonly Altered Splicing Events. PLoS ONE, 2014, 9, e87361.	1.1	168
212	Association of Cell-Free DNA Tumor Fraction and Somatic Copy Number Alterations With Survival in Metastatic Triple-Negative Breast Cancer. Journal of Clinical Oncology, 2018, 36, 543-553.	0.8	162
213	Inhibitor-Sensitive FGFR2 and FGFR3 Mutations in Lung Squamous Cell Carcinoma. Cancer Research, 2013, 73, 5195-5205.	0.4	153
214	Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nature Communications, 2018, 9, 1691.	5.8	153
215	Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nature Biotechnology, 2021, 39, 451-461.	9.4	150
216	CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature, 2022, 604, 563-570.	13.7	150

#	Article	IF	CITATIONS
217	The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nature Communications, 2017, 8, 2185.	5.8	148
218	PRADA: pipeline for RNA sequencing data analysis. Bioinformatics, 2014, 30, 2224-2226.	1.8	147
219	Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nature Communications, 2018, 9, 1746.	5.8	142
220	A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 2020, 11, 728.	5.8	140
221	Genomic evolution and chemoresistance in germ-cell tumours. Nature, 2016, 540, 114-118.	13.7	139
222	Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles. Cancer Discovery, 2016, 6, 714-726.	7.7	139
223	Clonal evolution in hematological malignancies and therapeutic implications. Leukemia, 2014, 28, 34-43.	3.3	138
224	Highâ€resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes and Cancer, 2008, 47, 530-542.	1.5	136
225	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-1² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
226	Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene, 2014, 33, 5295-5302.	2.6	132
227	Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nature Biotechnology, 2022, 40, 209-217.	9.4	127
228	Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Research, 2013, 23, 228-235.	2.4	124
229	Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nature Biotechnology, 2014, 32, 71-75.	9.4	120
230	A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17604-17609.	3.3	119
231	Phenotypic Characterization of a Comprehensive Set of MAPK1 /ERK2 Missense Mutants. Cell Reports, 2016, 17, 1171-1183.	2.9	119
232	The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discovery, 2021, 11, 678-695.	7.7	114
233	Comment on "The Consensus Coding Sequences of Human Breast and Colorectal Cancers". Science, 2007, 317, 1500-1500.	6.0	113
234	Invasive Bladder Cancer: Genomic Insights and Therapeutic Promise. Clinical Cancer Research, 2015, 21, 4514-4524.	3.2	110

#	Article	IF	CITATIONS
235	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	0.8	110
236	Sensitive Detection of Minimal Residual Disease in Patients Treated for Early-Stage Breast Cancer. Clinical Cancer Research, 2020, 26, 2556-2564.	3.2	109
237	Scaling computational genomics to millions of individuals with GPUs. Genome Biology, 2019, 20, 228.	3.8	108
238	Analysis of somatic microsatellite indels identifies driver events in human tumors. Nature Biotechnology, 2017, 35, 951-959.	9.4	106
239	Integrated Analyses of microRNAs Demonstrate Their Widespread Influence on Gene Expression in High-Grade Serous Ovarian Carcinoma. PLoS ONE, 2012, 7, e34546.	1.1	104
240	Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nature Communications, 2017, 8, 2193.	5.8	99
241	Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Advances, 2019, 3, 4065-4080.	2.5	99
242	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	5.8	98
243	Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences. Cell, 2020, 180, 915-927.e16.	13.5	98
244	Resistance to CDK2 Inhibitors Is Associated with Selection of Polyploid Cells in <i>CCNE1</i> -Amplified Ovarian Cancer. Clinical Cancer Research, 2013, 19, 5960-5971.	3.2	97
245	Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background. Genome Research, 2015, 25, 1634-1645.	2.4	96
246	NetSig: network-based discovery from cancer genomes. Nature Methods, 2018, 15, 61-66.	9.0	95
247	The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Reports, 2019, 27, 2690-2708.e10.	2.9	95
248	Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI Insight, 2018, 3, .	2.3	94
249	Whole Exome Sequencing Identifies TSC1/TSC2 Biallelic Loss as the Primary and Sufficient Driver Event for Renal Angiomyolipoma Development. PLoS Genetics, 2016, 12, e1006242.	1.5	93
250	Sporadic Early-Onset Diffuse Gastric Cancers Have High Frequency of Somatic CDH1 Alterations, but Low Frequency of Somatic RHOA Mutations Compared With Late-Onset Cancers. Gastroenterology, 2017, 153, 536-549.e26.	0.6	90
251	Data analysis: Create a cloud commons. Nature, 2015, 523, 149-151.	13.7	89
252	Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature, 2019, 570, 474-479.	13.7	86

#	Article	IF	CITATIONS
253	Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372, .	6.0	85
254	Computational Pathology: An Emerging Definition. Archives of Pathology and Laboratory Medicine, 2014, 138, 1133-1138.	1.2	78
255	Characterizing genomic alterations in cancer by complementary functional associations. Nature Biotechnology, 2016, 34, 539-546.	9.4	78
256	Survival of Del17p CLL Depends on Genomic Complexity and Somatic Mutation. Clinical Cancer Research, 2017, 23, 735-745.	3.2	74
257	Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7853-7858.	3.3	73
258	Pathway and network analysis of more than 2500 whole cancer genomes. Nature Communications, 2020, 11, 729.	5.8	73
259	Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes and Development, 2015, 29, 1018-1031.	2.7	72
260	Comparison of algorithms for the detection of cancer drivers at subgene resolution. Nature Methods, 2017, 14, 782-788.	9.0	72
261	Genomic analyses of PMBL reveal new drivers and mechanisms of sensitivity to PD-1 blockade. Blood, 2019, 134, 2369-2382.	0.6	72
262	DeTiN: overcoming tumor-in-normal contamination. Nature Methods, 2018, 15, 531-534.	9.0	71
263	A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell, 2019, 35, 283-296.e5.	7.7	71
264	Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene, 2005, 24, 6367-6375.	2.6	70
265	Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB Journal, 2005, 19, 147-149.	0.2	69
266	Parallel Genomic Alterations of Antigen and Payload Targets Mediate Polyclonal Acquired Clinical Resistance to Sacituzumab Govitecan in Triple-Negative Breast Cancer. Cancer Discovery, 2021, 11, 2436-2445.	7.7	69
267	Sporadic hemangioblastomas are characterized by cryptic VHL inactivation. Acta Neuropathologica Communications, 2014, 2, 167.	2.4	65
268	Identification of and Molecular Basis for SIRT6 Loss-of-Function Point Mutations in Cancer. Cell Reports, 2015, 13, 479-488.	2.9	64
269	Heterogeneity of Liver Lecithin isolated by Chromatography on Silicic Acid Columns. Nature, 1960, 188, 742-743.	13.7	61
270	Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nature Genetics, 2021, 53, 1664-1672.	9.4	61

#	Article	IF	CITATIONS
271	Long-term Benefit of PD-L1 Blockade in Lung Cancer Associated with <i>JAK3</i> Activation. Cancer Immunology Research, 2015, 3, 855-863.	1.6	60
272	Sex differences in oncogenic mutational processes. Nature Communications, 2020, 11, 4330.	5.8	60
273	Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science, 2021, 372, 725-729.	6.0	60
274	Passenger Hotspot Mutations in Cancer. Cancer Cell, 2019, 36, 288-301.e14.	7.7	59
275	Single-cell profiling of tumour evolution in multiple myeloma — opportunities for precision medicine. Nature Reviews Clinical Oncology, 2022, 19, 223-236.	12.5	58
276	Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nature Communications, 2020, 11, 3296.	5.8	55
277	RNA-SeQC 2: efficient RNA-seq quality control and quantification for large cohorts. Bioinformatics, 2021, 37, 3048-3050.	1.8	54
278	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nature Medicine, 2022, 28, 125-135.	15.2	53
279	Paired-end sequencing of Fosmid libraries by Illumina. Genome Research, 2012, 22, 2241-2249.	2.4	52
280	Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nature Cancer, 2021, 2, 758-772.	5.7	52
281	Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity. Journal of Autoimmunity, 2003, 21, 65-75.	3.0	50
282	Genomic Predictors of Good Outcome, Recurrence, or Progression in High-Grade T1 Non–Muscle-Invasive Bladder Cancer. Cancer Research, 2020, 80, 4476-4486.	0.4	49
283	Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nature Genetics, 2019, 51, 1308-1314.	9.4	47
284	DNA Polymerase and Mismatch Repair Exert Distinct Microsatellite Instability Signatures in Normal and Malignant Human Cells. Cancer Discovery, 2021, 11, 1176-1191.	7.7	46
285	Super-paramagnetic clustering of yeast gene expression profiles. Physica A: Statistical Mechanics and Its Applications, 2000, 279, 457-464.	1.2	45
286	Genomic Correlate of Exceptional Erlotinib Response in Head and Neck Squamous Cell Carcinoma. JAMA Oncology, 2015, 1, 238.	3.4	44
287	Genomic Evolution after Chemoradiotherapy in Anal Squamous Cell Carcinoma. Clinical Cancer Research, 2017, 23, 3214-3222.	3.2	44
288	In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1102-1107.	3.3	42

#	Article	IF	CITATIONS
289	Automated assignment of SCOP and CATH protein structure classifications from FSSP scores. Proteins: Structure, Function and Bioinformatics, 2002, 46, 405-415.	1.5	40
290	Characterization of the DNA Copy-Number Genome in the Blood of Cutaneous T-Cell Lymphoma Patients. Journal of Investigative Dermatology, 2012, 132, 188-197.	0.3	40
291	Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. International Journal of Cancer, 2015, 137, 776-783.	2.3	39
292	Activation of the MAPK pathway mediates resistance to PI3K inhibitors in chronic lymphocytic leukemia. Blood, 2021, 138, 44-56.	0.6	35
293	Systematic genomic and translational efficiency studies of uveal melanoma. PLoS ONE, 2017, 12, e0178189.	1.1	34
294	Longitudinal Single-Cell Dynamics of Chromatin Accessibility and Mitochondrial Mutations in Chronic Lymphocytic Leukemia Mirror Disease History. Cancer Discovery, 2021, 11, 3048-3063.	7.7	31
295	Finding Motifs in Promoter Regions. Journal of Computational Biology, 2005, 12, 314-330.	0.8	30
296	Integrative analysis reveals 53BP1 copy loss and decreased expression in a subset of human diffuse large B-cell lymphomas. Oncogene, 2008, 27, 318-322.	2.6	29
297	Resolving the phylogenetic origin of glioblastoma via multifocal genomic analysis of pre-treatment and treatment-resistant autopsy specimens. Npj Precision Oncology, 2017, 1, 33.	2.3	27
298	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	5.8	27
299	Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: a multicentre cohort study. Lancet Haematology,the, 2022, 9, e340-e349.	2.2	27
300	Regulation of Transient Site-specific Copy Gain by MicroRNA. Journal of Biological Chemistry, 2016, 291, 4862-4871.	1.6	25
301	Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia, 2017, 31, 2244-2247.	3.3	25
302	Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab. Molecular Cancer, 2014, 13, 141.	7.9	24
303	Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Research, 2018, 28, 1901-1918.	2.4	24
304	Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Reports, 2021, 36, 109665.	2.9	24
305	Clonal Evolution In Patients With Chronic Lymphocytic Leukemia (CLL) Developing Resistance To BTK Inhibition. Blood, 2013, 122, 866-866.	0.6	22
306	Single-cell RNA sequencing: one step closer to the clinic. Nature Medicine, 2021, 27, 375-376.	15.2	20

#	Article	IF	CITATIONS
307	Distinct evolutionary paths in chronic lymphocytic leukemia during resistance to the graft-versus-leukemia effect. Science Translational Medicine, 2020, 12, .	5.8	17
308	<i>ZBTB33</i> Is Mutated in Clonal Hematopoiesis and Myelodysplastic Syndromes and Impacts RNA Splicing. Blood Cancer Discovery, 2021, 2, 500-517.	2.6	17
309	Analyzing Frequently Mutated Genes and the Association With Tumor Mutation Load. JAMA Oncology, 2019, 5, 577.	3.4	16
310	Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile. Modern Pathology, 2021, 34, 264-279.	2.9	16
311	Whole-genome characterization of lung adenocarcinomas lacking alterations in the RTK/RAS/RAF pathway. Cell Reports, 2021, 34, 108707.	2.9	16
312	The immune microenvironment shapes transcriptional and genetic heterogeneity in chronic lymphocytic leukemia. Blood Advances, 2023, 7, 145-158.	2.5	15
313	Modeling Genomic Instability and Selection Pressure in a Mouse Model of Melanoma. Cell Reports, 2017, 19, 1304-1312.	2.9	14
314	Genomic Evolutionary Patterns of Leiomyosarcoma and Liposarcoma. Clinical Cancer Research, 2019, 25, 5135-5142.	3.2	14
315	Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Reports Medicine, 2022, 3, 100500.	3.3	13
316	Identification of Somatically Acquired <i>BRCA1/2</i> Mutations by cfDNA Analysis in Patients with Metastatic Breast Cancer. Clinical Cancer Research, 2020, 26, 4852-4862.	3.2	12
317	PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis. Nature Methods, 2021, 18, 580-582.	9.0	11
318	Butler enables rapid cloud-based analysis of thousands of human genomes. Nature Biotechnology, 2020, 38, 288-292.	9.4	11
319	Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes. Nature Communications, 2022, 13, .	5.8	11
320	Whole-Exome Sequencing and Targeted Deep Sequencing of cfDNA Enables a Comprehensive Mutational Profiling of Multiple Myeloma. Blood, 2016, 128, 197-197.	0.6	8
321	Developing Algorithms to Discover Novel Cancer Genes: A look at the challenges and approaches. IEEE Signal Processing Magazine, 2012, 29, 89-97.	4.6	7
322	A (fire)cloud-based DNA methylation data preprocessing and quality control platform. BMC Bioinformatics, 2019, 20, 160.	1.2	7
323	Functional Somatic and Germline Variants in the NF-κB Pathway in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 560-560.	0.6	7
324	NF-κB Pathway Mutations Modulate Cell Survival and Ibrutinib Response In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 670-670.	0.6	5

#	Article	IF	CITATIONS
325	Whole Genome Sequencing Identifies Functional Mutations In the Wnt Pathway In CLL. Blood, 2010, 116, 693-693.	0.6	5
326	Inflammatory stromal cells in the myeloma microenvironment. Nature Immunology, 2021, 22, 677-678.	7.0	4
327	Comprehensive Genomic Analysis of Primary Mediastinal B-Cell Lymphoma. Blood, 2018, 132, 1564-1564.	0.6	4
328	Increased Local Disorder of DNA Methylation Forms the Basis of High Intra-Leukemic Epigenetic Heterogeneity and Enhances CLL Evolution. Blood, 2013, 122, 596-596.	0.6	4
329	Subclonal Driver Mutations Predict Shorter Progression Free Survival in Chronic Lymphocytic Leukemia Following First-Line Chemo(immuno)Therapy: Results from the CLL8 Trial. Blood, 2014, 124, 1938-1938.	0.6	4
330	Novel Putative Driver Gene Mutations in Chronic Lymphocytic Leukemia (CLL): Results from a Combined Analysis of Whole-Exome Sequencing of 262 Primary CLL Samples. Blood, 2014, 124, 1952-1952.	0.6	4
331	Quantitative Clonal Dynamics Define Mechanisms of CLL Evolution in Response to Combination Chemotherapy. Blood, 2015, 126, 362-362.	0.6	4
332	In Silico and Functional Characterization of TBL1XR1 as a Tumor Suppressor in Large B-Cell Lymphomas. Blood, 2016, 128, 612-612.	0.6	4
333	Detection of Recurrent Mutations by Pooled Targeted Next-Generation Sequencing in MDS Patients Prior to Treatment with Hypomethylating Agents or Stem Cell Transplantation. Blood, 2012, 120, 311-311.	0.6	3
334	The Landscape of Dynamic Genetic Changes in Ibrutinib-Treated CLL. Blood, 2016, 128, 188-188.	0.6	3
335	High Prevalence of Monoclonal Gammopathy in a Population at Risk: The First Results of the Promise Study. Blood, 2021, 138, 152-152.	0.6	3
336	Genetic Determinants and Evolutionary History of Richter's Syndrome. Blood, 2020, 136, 47-48.	0.6	3
337	Comment on "DNA damage is a pervasive cause of sequencing errors, directly confounding variant identificationâ€: Science, 2018, 361, .	6.0	2
338	SF3B1 Mutation Alters The Selection Of 3' RNA Splice Sites In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 117-117.	0.6	2
339	Actionable Genetic Features of Primary Testicular and Primary Central Nervous System Lymphomas. Blood, 2014, 124, 74-74.	0.6	2
340	The CLL-1100 Project: Towards Complete Genomic Characterization and Improved Prognostics for CLL. Blood, 2020, 136, 3-4.	0.6	2
341	Shifts in Intra-Clonal Dynamics Rather Than Novel Mutations Are the Main Engine Driving Tumor Evolution in Relapsed CLL. Blood, 2011, 118, 284-284.	0.6	1
342	Reconstructing a Genotype-Phenotype Map In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 2857-2857.	0.6	1

#	Article	IF	CITATIONS
343	Transcriptional Hallmarks Of Tumor Infiltrating Lymphocyte Responses To Melanoma. Blood, 2013, 122, 3491-3491.	0.6	1
344	Escape from X-Inactivation Tumor Suppressor (EXITS) Genes Are Associated with Excess Incidence of Cancer in Men. Blood, 2015, 126, 3665-3665.	0.6	1
345	The Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 5-5.	0.6	1
346	Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes. Blood, 2014, 124, 840-840.	0.6	1
347	Integrative Analysis Reveals Multiple Alterations of p53 Signaling Pathway Components In Primary Diffuse Large B-Cell Lymphomas. Blood, 2010, 116, 635-635.	0.6	0
348	Novel Germline Genetic Variants Associated with Familial Chronic Lymphocytic Leukemia (CLL). Blood, 2011, 118, 465-465.	0.6	0
349	Large-Scale CLL Genome Analysis Reveals Novel Cancer Genes, Including SF3B1. Blood, 2011, 118, 463-463.	0.6	0
350	Multiple Myeloma Sequencing Reveals Subclonality and Timing of Genetic Alterations. Blood, 2011, 118, 2897-2897.	0.6	0
351	The Mutational Landscape of Diffuse Large B Cell Lymphoma. Blood, 2011, 118, 259-259.	0.6	0
352	Abstract IA13: Recurrent SPOP mutations define a distinct molecular subclass of prostate cancer. Cancer Research, 2012, 72, IA13-IA13.	0.4	0
353	Somatic Mutation As a Mechanism of Wnt/\hat{l}^2 -Catenin Pathway Activation in CLL. Blood, 2012, 120, 559-559.	0.6	0
354	Systematic Identification of Personal Mutated Tumor-Specific Neoantigens in CLL. Blood, 2012, 120, 954-954.	0.6	0
355	A Structural Basis for p53-Deficiency, Deregulated Cell Cycle and Unfavorable Outcome in Diffuse Large B-Cell Lymphoma. Blood, 2012, 120, 1534-1534.	0.6	0
356	High Throughput Sequencing-Based Pathogen Discovery In Multiple Myeloma. Blood, 2013, 122, 5322-5322.	0.6	0
357	Tumor Neoantigens Are Abundant Across Cancers. Blood, 2013, 122, 3265-3265.	0.6	0
358	Whole Genome Sequencing of Indolent CLL Reveals Novel Structural Rearrangements. Blood, 2014, 124, 1939-1939.	0.6	0
359	Comprehensive Analyses of Genetic Features Identify Coordinate Signatures in Diffuse Large B-Cell Lymphoma. Blood, 2015, 126, 3922-3922.	0.6	0
360	Whole Exome Sequencing and Targeted Sequencing Reveal the Heterogeneity of Genomic Evolution and Mutational Profile in Smoldering Multiple Myeloma. Blood, 2016, 128, 237-237.	0.6	0

#	Article	IF	CITATIONS
361	The cell subtype of origin and not the tumor-promoting event is critical for the formation of breast cancer subtypes. , 2018, 78, .		0
362	Clonal and Single Cell Dynamics of Resistance to Graft-Versus-Leukemia (GvL) in Chronic Lymphocytic Leukemia (CLL). Blood, 2018, 132, 820-820.	0.6	0
363	Comparative Genomic Analyses Defines Shared and Unique Features of cHL and PMBL and New Mechanisms of Sensitivity to PD-1 Blockade. Blood, 2019, 134, 1493-1493.	0.6	0
364	221â€CRISPR screen identifies loss of IFNγR signaling and downstream adhesion as a resistance mechanism to CAR T-cell cytotoxicity in solid but not liquid tumors. , 2021, 9, A234-A234.		0
365	Single Cell Characterization of Myeloma and Its Precursor Conditions Reveals Transcriptional Signatures of Early Tumorigenesis. Blood, 2021, 138, 2219-2219.	0.6	0
366	Abstract P065: Proteogenomic characterization of CDK4/6 inhibitor-resistant ER+ breast cancer. , 2021, , ,		0
367	Abstract 2287: Dissecting the heterogeneity of central nervous system hemangioblastomas by single-cell and single-nuclei RNA sequencing. Cancer Research, 2022, 82, 2287-2287.	0.4	0
368	Abstract 794: Pan-cancer proteogenomic analysis reveals functional mechanisms underlying DNA repair deficiencies. Cancer Research, 2022, 82, 794-794.	0.4	0
369	Abstract 3575: Differential dynamics of response at single cell resolution between axi-cel and tisa-cel CAR-T therapy in refractory B-cell lymphomas. Cancer Research, 2022, 82, 3575-3575.	0.4	0
370	Abstract 2151: Identification and proteogenomic characterization of novel lung adenocarcinoma subtypes with therapeutic relevance. Cancer Research, 2022, 82, 2151-2151.	0.4	0