List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2843138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate lymphoid cell characterization in the rat and their correlation to gut commensal microbes. European Journal of Immunology, 2022, 52, 717-729.	2.9	2
2	TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences. Briefings in Bioinformatics, 2022, 23, .	6.5	5
3	Stereotyped B ell responses are linked to IgG constant region polymorphisms in multiple sclerosis. European Journal of Immunology, 2022, 52, 550-565.	2.9	10
4	Lymphocyte subsets in Atlantic cod (Gadus morhua) interrogated by single-cell sequencing. Communications Biology, 2022, 5, .	4.4	4
5	Lung CD4+ T-cells in patients with lung fibrosis produce pro-fibrotic interleukin-13 together with interferon-Î ³ . European Respiratory Journal, 2021, 57, 2000983.	6.7	6
6	T cell receptor repertoire as a potential diagnostic marker for celiac disease. Clinical Immunology, 2021, 222, 108621.	3.2	11
7	Câ€type lectinâ€like CD161 is not a coâ€signalling receptor in glutenâ€reactive CD4Â+ÂT cells. Scandinavian Journal of Immunology, 2021, 93, e13016.	2.7	3
8	Frequency of Gluten-Reactive T Cells in Active Celiac Lesions Estimated by Direct Cell Cloning. Frontiers in Immunology, 2021, 12, 646163.	4.8	12
9	Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells. Scientific Reports, 2021, 11, 9252.	3.3	6
10	Comprehensive Analysis of CDR3 Sequences in Gluten-Specific T-Cell Receptors Reveals a Dominant R-Motif and Several New Minor Motifs. Frontiers in Immunology, 2021, 12, 639672.	4.8	23
11	Immunobiology and conflicting roles of the human CD161 receptor in T cells. Scandinavian Journal of Immunology, 2021, 94, e13090.	2.7	8
12	Longevity, clonal relationship, and transcriptional program of celiac disease–specific plasma cells. Journal of Experimental Medicine, 2021, 218, .	8.5	25
13	Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq. PLoS ONE, 2021, 16, e0258029.	2.5	4
14	Characterization of Tâ€cell receptor transgenic mice recognizing immunodominant HLAâ€DQ2.5â€restricted gluten epitopes. European Journal of Immunology, 2021, 51, 1002-1005.	2.9	4
15	Update 2020: nomenclature and listing of celiac disease–relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics, 2020, 72, 85-88.	2.4	125
16	Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally Lacks the Major Histocompatibility Class II System. Frontiers in Immunology, 2020, 11, 559555.	4.8	24
17	B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. Journal of Experimental Medicine, 2020, 217, .	8.5	38
18	A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3063-3073	7.1	47

#	Article	IF	CITATIONS
19	Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFNÎ ³ Signaling in Celiac Disease. Frontiers in Genetics, 2020, 11, 562434.	2.3	20
20	Resident memory CD8 T cells persist for years in human small intestine. Journal of Experimental Medicine, 2019, 216, 2412-2426.	8.5	101
21	Two novel HLA-DQ2.5-restricted gluten T cell epitopes in the DQ2.5-glia-Î ³ 4 epitope family. Immunogenetics, 2019, 71, 665-667.	2.4	5
22	Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Science Advances, 2019, 5, eaaw7756.	10.3	84
23	Plasma Cells Are the Most Abundant Gluten Peptide MHC-expressing Cells in Inflamed Intestinal Tissues FromÂPatients With Celiac Disease. Gastroenterology, 2019, 156, 1428-1439.e10.	1.3	61
24	Epitope Selection for HLA-DQ2 Presentation: Implications for Celiac Disease and Viral Defense. Journal of Immunology, 2019, 202, 2558-2569.	0.8	10
25	Discriminative T-cell receptor recognition of highly homologous HLA-DQ2–bound gluten epitopes. Journal of Biological Chemistry, 2019, 294, 941-952.	3.4	38
26	Characterization of unique pro-fibrotic T cells resident in the lungs. , 2019, , .		0
27	HLA-DQ–Gluten Tetramer Blood Test Accurately Identifies Patients With and Without Celiac Disease in Absence of Gluten Consumption. Gastroenterology, 2018, 154, 886-896.e6.	1.3	74
28	Exploiting antigen receptor information to quantify index switching in single-cell transcriptome sequencing experiments. PLoS ONE, 2018, 13, e0208484.	2.5	4
29	BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nature Methods, 2018, 15, 563-565.	19.0	84
30	Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. Journal of Clinical Investigation, 2018, 128, 2642-2650.	8.2	90
31	Similar Responses of Intestinal T Cells From Untreated Children and Adults With Celiac Disease to Deamidated Gluten Epitopes. Gastroenterology, 2017, 153, 787-798.e4.	1.3	24
32	A TCRα framework–centered codon shapes a biased T cell repertoire through direct MHC and CDR3β interactions. JCI Insight, 2017, 2, .	5.0	15
33	The Immune Responses of Celiac Disease. , 2016, , 219-226.		Ο
34	TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage. Mucosal Immunology, 2016, 9, 587-596.	6.0	44
35	Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. Journal of Immunology, 2016, 196, 2819-2826.	0.8	29
36	Small Bowel, Celiac Disease and Adaptive Immunity. Digestive Diseases, 2015, 33, 115-121.	1.9	20

3

#	Article	IF	CITATIONS
37	Coeliac disease – from genetic and immunological studies to clinical applications. Scandinavian Journal of Gastroenterology, 2015, 50, 708-717.	1.5	23
38	Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Critical Reviews in Biotechnology, 2015, 35, 235-254.	9.0	201
39	Tetramerâ€visualized glutenâ€specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. United European Gastroenterology Journal, 2014, 2, 268-278.	3.8	79
40	HLA-DQ Molecules as Affinity Matrix for Identification of Gluten T Cell Epitopes. Journal of Immunology, 2014, 193, 4497-4506.	0.8	26
41	Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. International Immunology, 2014, 26, 13-19.	4.0	56
42	The Immunologic Functions of the Neonatal Fc Receptor for IgG. Journal of Clinical Immunology, 2013, 33, 9-17.	3.8	120
43	High abundance of plasma cells secreting transglutaminase 2–specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nature Medicine, 2012, 18, 441-445.	30.7	210
44	The adaptive immune response in celiac disease. Seminars in Immunopathology, 2012, 34, 523-540.	6.1	54
45	Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics, 2012, 64, 455-460.	2.4	442
46	Interaction of HLA-DM and HLA-DQ2 in antigen presentation: Implications for celiac disease association. Molecular Immunology, 2012, 51, 38.	2.2	0
47	Interaction of HLA-DM and HLA-DQ2 in antigen presentation: Implications for celiac disease association. Molecular Immunology, 2012, 51, 40.	2.2	0
48	Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clinical and Experimental Immunology, 2011, 164, 127-136.	2.6	43
49	Posttranslational Modification of Gluten Shapes TCR Usage in Celiac Disease. Journal of Immunology, 2011, 187, 3064-3071.	0.8	92
50	Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8 ^{â^'} CD11b ⁺ dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9927-9932.	7.1	187
51	Neonatal Fc Receptor: From Immunity to Therapeutics. Journal of Clinical Immunology, 2010, 30, 777-789.	3.8	208
52	The Preferred Substrates for Transglutaminase 2 in a Complex Wheat Gluten Digest Are Peptide Fragments Harboring Celiac Disease T-Cell Epitopes. PLoS ONE, 2010, 5, e14056.	2.5	88
53	Antigen presentation in celiac disease. Current Opinion in Immunology, 2009, 21, 111-117.	5.5	46
54	Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Seminars in Immunopathology, 2009, 31, 223-236.	6.1	115

#	Article	IF	CITATIONS
55	A Quantitative Analysis of Transglutaminase 2-Mediated Deamidation of Gluten Peptides: Implications for the T-cell Response in Celiac Disease. Journal of Proteome Research, 2009, 8, 1748-1755.	3.7	57
56	An FcRn-Dependent Role for Anti-flagellin Immunoglobulin G in Pathogenesis of Colitis in Mice. Gastroenterology, 2009, 137, 1746-1756.e1.	1.3	77
57	Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Annals of Medicine, 2009, 41, 390-400.	3.8	50
58	Dependence of antibody-mediated presentation of antigen on FcRn. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9337-9342.	7.1	229
59	Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Inhibits Proximal TCR Signaling by Targeting ZAP-70. Journal of Immunology, 2008, 180, 6085-6093.	0.8	65
60	How the controller is controlled ? neonatal Fc receptor expression and immunoglobulin G homeostasis. Immunology, 2007, 120, 145-147.	4.4	11
61	SHP1 Phosphatase-Dependent T Cell Inhibition by CEACAM1 Adhesion Molecule Isoforms. Immunity, 2006, 25, 769-781.	14.3	123
62	Tissue Transglutaminase-Mediated Formation and Cleavage of Histamine-Gliadin Complexes: Biological Effects and Implications for Celiac Disease. Journal of Immunology, 2005, 174, 1657-1663.	0.8	38
63	Refining the Rules of Gliadin T Cell Epitope Binding to the Disease-Associated DQ2 Molecule in Celiac Disease: Importance of Proline Spacing and Glutamine Deamidation. Journal of Immunology, 2005, 175, 254-261.	0.8	157
64	Identification and Analysis of Multivalent Proteolytically Resistant Peptides from Gluten:Â Implications for Celiac Sprue. Journal of Proteome Research, 2005, 4, 1732-1741.	3.7	239
65	Molecular Characterization of Covalent Complexes between Tissue Transglutaminase and Gliadin Peptides. Journal of Biological Chemistry, 2004, 279, 17607-17616.	3.4	136
66	Antigen Presentation to Celiac Lesion-Derived T Cells of a 33-Mer Gliadin Peptide Naturally Formed by Gastrointestinal Digestion. Journal of Immunology, 2004, 173, 1757-1762.	0.8	140
67	Gliadin T Cell Epitope Selection by Tissue Transglutaminase in Celiac Disease. Journal of Biological Chemistry, 2002, 277, 34109-34116.	3.4	201
68	Chronic l-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder. Behavioural Brain Research, 1998, 94, 153-162.	2.2	52