
Saeed Doagou Rad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2842886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials for Wind Turbine Blades: An Overview. Materials, 2017, 10, 1285.	2.9	392
2	Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering Reports, 2014, 81, 1-19.	31.8	214
3	Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Composites Part B: Engineering, 2012, 43, 3425-3430.	12.0	115
4	Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Computational Materials Science, 2014, 95, 684-692.	3.0	110
5	Repair of wind turbine blades: Review of methods and related computational mechanics problems. Renewable Energy, 2019, 140, 828-839.	8.9	85
6	Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships. Computational Materials Science, 2014, 81, 630-640.	3.0	75
7	Leading edge erosion of wind turbine blades: Understanding, prevention and protection. Renewable Energy, 2021, 169, 953-969.	8.9	72
8	Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions. Materials, 2021, 14, 1124.	2.9	59
9	Fatigue of hybrid glass/carbon composites: 3D computational studies. Composites Science and Technology, 2014, 94, 71-79.	7.8	55
10	Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis. Composites Science and Technology, 2014, 91, 71-81.	7.8	53
11	Effects of Carbon Nanoreinforcements of Different Shapes on the Mechanical Properties of Epoxyâ€Based Nanocomposites. Macromolecular Materials and Engineering, 2013, 298, 670-678.	3.6	52
12	Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies. Composites Part B: Engineering, 2015, 68, 75-84.	12.0	52
13	Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships. Composite Structures, 2014, 117, 156-168.	5.8	51
14	Nanomorphology of graphene and CNT reinforced polymer and its effect on damage: Micromechanical numerical study. Composites Part B: Engineering, 2016, 96, 338-349.	12.0	47
15	Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites. Composites Science and Technology, 2009, 69, 477-484.	7.8	43
16	Nano″Microscale Investigation of Tribological and Mechanical Properties of Epoxy/MWNT Nanocomposites. Macromolecular Materials and Engineering, 2012, 297, 689-701.	3.6	42
17	Toolbox for optimizing antiâ€erosion protective coatings of wind turbine blades: Overview of mechanisms and technical solutions. Wind Energy, 2019, 22, 1636-1653.	4.2	37
18	Micromechanisms of leading edge erosion of wind turbine blades: Xâ€ r ay tomography analysis and computational studies. Wind Energy, 2020, 23, 547-562.	4.2	35

SAEED DOAGOU RAD

#	Article	IF	CITATIONS
19	Composite materials for wind energy applications: micromechanical modeling and future directions. Computational Mechanics, 2012, 50, 195-207.	4.0	34
20	Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview. Materials, 2022, 15, 2959.	2.9	33
21	Impact fatigue damage of coated glass fibre reinforced polymer laminate. Renewable Energy, 2018, 126, 1102-1112.	8.9	30
22	Micromechanical model of surface erosion of polyurethane coatings on wind turbine blades. Polymer Degradation and Stability, 2019, 166, 283-289.	5.8	28
23	Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation. Meccanica, 2020, 55, 725-743.	2.0	28
24	Uncertainty modelling and code calibration for composite materials. Journal of Composite Materials, 2013, 47, 1729-1747.	2.4	27
25	An applicationâ€oriented roadmap to select polymeric nanocomposites for advanced applications: A review. Polymer Composites, 2020, 41, 1153-1189.	4.6	26
26	Leading edge erosion of wind turbine blades: Multiaxial critical plane fatigue model of coating degradation under random liquid impacts. Wind Energy, 2020, 23, 1752-1766.	4.2	24
27	Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphene. Composite Structures, 2019, 217, 27-36.	5.8	23
28	Failure mechanisms of wind turbine blades in India: Climatic, regional, and seasonal variability. Wind Energy, 2022, 25, 968-979.	4.2	19
29	Hierarchical materials: Background and perspectives. MRS Bulletin, 2016, 41, 661-664.	3.5	18
30	Nanoengineered Graphene-Reinforced Coating for Leading Edge Protection of Wind Turbine Blades. Coatings, 2021, 11, 1104.	2.6	16
31	Development of metal–graphene-filled hybrid composites: Characterization of mechanical, thermal, and electrical properties. Journal of Composite Materials, 2019, 53, 3363-3376.	2.4	15
32	Novel Hybrid Polymer Composites with Graphene and MXene Nano-Reinforcements: Computational Analysis. Polymers, 2021, 13, 1013.	4.5	14
33	Influence of Processing Conditions on the Mechanical Behavior of MWCNT Reinforced Thermoplastic Nanocomposites. Procedia CIRP, 2017, 66, 131-136.	1.9	13
34	Rain erosion of wind turbine blades and the effect of air bubbles in the coatings. Wind Energy, 2021, 24, 1071-1082.	4.2	13
35	Selection of Nepalese Timber for Small Wind Turbine Blade Construction. Wind Engineering, 2010, 34, 263-276.	1.9	12
36	Interaction of nanofillers in injection-molded graphene/carbon nanotube reinforced PA66 hybrid nanocomposites. Journal of Polymer Engineering, 2018, 38, 971-981.	1.4	12

SAEED DOAGOU RAD

#	Article	IF	CITATIONS
37	Investigation of conductive hybrid polymer composites reinforced with copper micro fibers and carbon nanotubes produced by injection molding. Materials Today Communications, 2019, 20, 100566.	1.9	8
38	Deformation of Bioinspired MXene-Based Polymer Composites with Brick and Mortar Structures: A Computational Analysis. Materials, 2020, 13, 5189.	2.9	8
39	Hierarchical machining materials and their performance. MRS Bulletin, 2016, 41, 678-682.	3.5	7
40	Nanocomposites for Machining Tools. Materials, 2017, 10, 1171.	2.9	7
41	Correlation of mechanical and electrical properties with processing variables in MWCNT reinforced thermoplastic nanocomposites. Journal of Composite Materials, 2018, 52, 3681-3697.	2.4	7
42	A Finite Element Modeling Prediction in High Precision Milling Process of Aluminum 6082-T6. Nanomanufacturing and Metrology, 2018, 1, 236-247.	3.0	6
43	Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities. Materials, 2017, 10, 1278.	2.9	5
44	Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection: Properties and performance. Polymers and Polymer Composites, 2022, 30, 096739112210741.	1.9	3
45	Repair of Wind Turbine Blades: Costs and Quality. Journal of Physics: Conference Series, 2022, 2265, 032032.	0.4	3
46	Mechanisms and computational analysis of leading edge erosion of wind turbine blades. IOP Conference Series: Materials Science and Engineering, 2020, 942, 012025.	0.6	1
47	Micromechanical modeling of nacre-mimetic Ti3C2-MXene nanocomposites with viscoelastic polymer matrix. MRS Advances, 2021, 6, 729-733.	0.9	1