Zoran Kapelan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2842464/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A review of methods for leakage management in pipe networks. Urban Water Journal, 2010, 7, 25-45.	1.0	532
2	Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environmental Modelling and Software, 2014, 62, 271-299.	1.9	477
3	The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 556-568.	1.3	464
4	Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 2008, 134, 626-635.	0.7	306
5	Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of Environmental Management, 2019, 239, 244-254.	3.8	190
6	Multiobjective design of water distribution systems under uncertainty. Water Resources Research, 2005, 41, .	1.7	174
7	Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environmental Modelling and Software, 2019, 114, 195-213.	1.9	169
8	Development of pipe deterioration models for water distribution systems using EPR. Journal of Hydroinformatics, 2008, 10, 113-126.	1.1	166
9	Quo vadis water distribution model calibration?. Urban Water Journal, 2009, 6, 3-22.	1.0	166
10	Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	157
11	Least-Cost Design of Water Distribution Networks under Demand Uncertainty. Journal of Water Resources Planning and Management - ASCE, 2005, 131, 375-382.	1.3	149
12	A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2003, 41, 481-492.	0.7	148
13	Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 457-467.	1.3	145
14	Battle of the Water Calibration Networks. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 523-532.	1.3	134
15	Optimal Design of Water Distribution Systems Using Many-Objective Visual Analytics. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 624-633.	1.3	131
16	Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Science of the Total Environment, 2020, 703, 134980.	3.9	129
17	Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization. Risk Analysis, 2014, 34, 75-92.	1.5	127
18	Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environmental Modelling and Software, 2009, 24, 530-541.	1.9	123

#	Article	IF	CITATIONS
19	Multiobjective Sampling Design for Water Distribution Model Calibration. Journal of Water Resources Planning and Management - ASCE, 2003, 129, 466-479.	1.3	115
20	Fast Hybrid Optimization Method for Effective Pump Scheduling. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 175-183.	1.3	98
21	Integrated System Dynamics Modelling for water scarcity assessment: Case study of the Kairouan region. Science of the Total Environment, 2012, 440, 290-306.	3.9	93
22	Adaptive water demand forecasting for near real-time management of smart water distribution systems. Environmental Modelling and Software, 2014, 60, 265-276.	1.9	92
23	<scp>R</scp> eal <scp>O</scp> ptions in flood risk management decision making. Journal of Flood Risk Management, 2011, 4, 339-349.	1.6	91
24	Probabilistic prediction of urban water consumption using the SCEM-UA algorithm. Urban Water Journal, 2008, 5, 125-132.	1.0	83
25	Algorithm for Automatic Detection of Topological Changes in Water Distribution Networks. Journal of Hydraulic Engineering, 2008, 134, 435-446.	0.7	82
26	Reducing the Complexity of Multiobjective Water Distribution System Optimization through Global Sensitivity Analysis. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 196-207.	1.3	82
27	Calibration of Water Distribution Hydraulic Models Using a Bayesian-Type Procedure. Journal of Hydraulic Engineering, 2007, 133, 927-936.	0.7	78
28	Robust optimization of water infrastructure planning under deep uncertainty using metamodels. Environmental Modelling and Software, 2017, 93, 92-105.	1.9	78
29	Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resources Management, 2018, 32, 2505-2522.	1.9	75
30	Risk-Based Sensor Placement for Contaminant Detection in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 629-636.	1.3	74
31	Using Information-Gap Decision Theory for Water Resources Planning Under Severe Uncertainty. Water Resources Management, 2013, 27, 1149-1172.	1.9	74
32	Optimal Sampling Design Methodologies for Water Distribution Model Calibration. Journal of Hydraulic Engineering, 2005, 131, 190-200.	0.7	70
33	Fuzzy probabilistic design of water distribution networks. Water Resources Research, 2011, 47, .	1.7	69
34	Comparing Low and High-Level Hybrid Algorithms on the Two-Objective Optimal Design of Water Distribution Systems. Water Resources Management, 2015, 29, 1-16.	1.9	66
35	COMPREHENSIVE RISK MANAGEMENT USING FUZZY FMEA AND MCDA TECHNIQUES IN HIGHWAY CONSTRUCTION PROJECTS. Journal of Civil Engineering and Management, 2016, 23, 300-310.	1.9	65
36	Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technologies and Environmental Policy, 2011, 13, 133-139.	2.1	64

#	Article	IF	CITATIONS
37	Leak Localization in a Real Water Distribution Network Based on Search-Space Reduction. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	1.3	62
38	Extended Period Simulation Analysis Considering Valve Shutdowns. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 527-537.	1.3	60
39	Leak Detection and Localization through Demand Components Calibration. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	60
40	Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water (Switzerland), 2020, 12, 1049.	1.2	58
41	Using Smart Meters for Household Water Consumption Feedback: Knowns and Unknowns. Procedia Engineering, 2014, 89, 990-997.	1.2	56
42	Using Complex Network Analysis for Optimization of Water Distribution Networks. Water Resources Research, 2020, 56, e2020WR027929.	1.7	53
43	Flexible Water Distribution System Design under Future Demand Uncertainty. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	50
44	Multi-objective rehabilitation of urban drainage systems under uncertainties. Journal of Hydroinformatics, 2014, 16, 1044-1061.	1.1	49
45	Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems. Science of the Total Environment, 2015, 527-528, 220-231.	3.9	49
46	Comparison of Robust Optimization and Info-Gap Methods for Water Resource Management under Deep Uncertainty. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	49
47	Hourly and Daily Urban Water Demand Predictions Using a Long Short-Term Memory Based Model. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	49
48	Incorporation of prior information on parameters in inverse transient analysis for leak detection and roughness calibration. Urban Water Journal, 2004, 1, 129-143.	1.0	47
49	Modelling metabolism based performance of an urban water system using WaterMet2. Resources, Conservation and Recycling, 2015, 99, 84-99.	5.3	47
50	Risk- and robustness-based solutions to a multi-objective water distribution system rehabilitation problem under uncertainty. Water Science and Technology, 2006, 53, 61-75.	1.2	46
51	Robust Least-Cost Design of Water Distribution Networks Using Redundancy and Integration-Based Methodologies. Journal of Water Resources Planning and Management - ASCE, 2007, 133, 67-77.	1.3	46
52	Operational and Tactical Management of Water and Energy Resources in Pressurized Systems: Competition at WDSA 2014. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	44
53	Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Research, 2021, 189, 116639.	5.3	43
54	SLOTS: Effective Algorithm for Sensor Placement in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2010, 136, 620-628.	1.3	42

Zoran Kapelan

#	Article	IF	CITATIONS
55	Multiobjective Optimization for Improved Management of Flood Risk. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 201-215.	1.3	41
56	Forecasting Domestic Water Consumption from Smart Meter Readings Using Statistical Methods and Artificial Neural Networks. Procedia Engineering, 2015, 119, 1419-1428.	1.2	41
57	Geostatistical techniques for approximate location of pipe burst events in water distribution systems. Journal of Hydroinformatics, 2013, 15, 634-651.	1.1	40
58	<scp>G</scp> ALAXY: A new hybrid <scp>M</scp> OEA for the optimal design of <scp>W</scp> ater <scp>D</scp> istribution <scp>S</scp> ystems. Water Resources Research, 2017, 53, 1997-2015.	1.7	40
59	An ensemble stacked model with bias correction for improved water demand forecasting. Urban Water Journal, 2020, 17, 212-223.	1.0	40
60	A novel machine learning application: Water quality resilience prediction Model. Science of the Total Environment, 2021, 768, 144459.	3.9	40
61	A probabilistic methodology for quantifying, diagnosing and reducing model structural and predictive errors in short term water demand forecasting. Environmental Modelling and Software, 2015, 66, 87-97.	1.9	38
62	Automated detection of faults in sewers using CCTV image sequences. Automation in Construction, 2018, 95, 64-71.	4.8	38
63	Efficient Leak Localization in Water Distribution Systems Using Multistage Optimal Valve Operations and Smart Demand Metering. Water Resources Research, 2020, 56, e2020WR028285.	1.7	37
64	A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain. Water (Switzerland), 2017, 9, 507.	1.2	36
65	Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt. Science of the Total Environment, 2015, 503-504, 279-288.	3.9	35
66	Metabolism-modelling approaches to long-term sustainability assessment of urban water services. Urban Water Journal, 2017, 14, 11-22.	1.0	35
67	Water quality modeling in sewer networks: Review and future research directions. Water Research, 2021, 202, 117419.	5.3	35
68	Water Demand Forecasting Accuracy and Influencing Factors at Different Spatial Scales Using a Gradient Boosting Machine. Water Resources Research, 2020, 56, e2019WR026304.	1.7	33
69	Assessing the global resilience of water quality sensor placement strategies within water distribution systems. Water Research, 2020, 172, 115527.	5.3	32
70	Smart Meters, Smart Water, Smart Societies: The iWIDGET Project. Procedia Engineering, 2014, 89, 1105-1112.	1.2	31
71	Considering the Mutual Dependence of Pulse Duration and Intensity in Models for Generating Residential Water Demand. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	31
72	A diameterâ€sensitive flow entropy method for reliability consideration in water distribution system design. Water Resources Research, 2014, 50, 5597-5610.	1.7	30

#	Article	IF	CITATIONS
73	Parameterizing residential water demand pulse models through smart meter readings. Environmental Modelling and Software, 2016, 80, 33-40.	1.9	30
74	Machine Learningâ€Based Surrogate Modeling for Urban Water Networks: Review and Future Research Directions. Water Resources Research, 2022, 58, .	1.7	30
75	An effective multi-objective approach to prioritisation of sewer pipe inspection. Water Science and Technology, 2009, 60, 841-850.	1.2	28
76	Automated Detection of Faults in Wastewater Pipes from CCTV Footage by Using Random Forests. Procedia Engineering, 2016, 154, 36-41.	1.2	28
77	Statistical Process Control Based System for Approximate Location of Pipe Bursts and Leaks in Water Distribution Systems. Procedia Engineering, 2017, 186, 236-243.	1.2	28
78	Automated detection of fault types in CCTV sewer surveys. Journal of Hydroinformatics, 2019, 21, 153-163.	1.1	28
79	Real-time Burst Detection in Water Distribution Systems Using a Bayesian Demand Forecasting Methodology. Procedia Engineering, 2015, 119, 13-18.	1.2	27
80	Improving the Resilience of Postdisaster Water Distribution Systems Using Dynamic Optimization Framework. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	27
81	Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resources Management, 2013, 27, 819-841.	1.9	26
82	Online Burst Detection in a Water Distribution System Using the Kalman Filter and Hydraulic Modelling. Procedia Engineering, 2014, 89, 418-427.	1.2	26
83	Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management. Water Science and Technology: Water Supply, 2018, 18, 1365-1374.	1.0	26
84	Can smart rainwater harvesting schemes result in the improved performance of integrated urban water systems?. Environmental Science and Pollution Research, 2018, 25, 19271-19282.	2.7	26
85	Non-deposition self-cleansing models for large sewer pipes. Water Science and Technology, 2020, 81, 606-621.	1.2	26
86	Probabilistic building block identification for the optimal design and rehabilitation of water distribution systems. Journal of Hydroinformatics, 2009, 11, 89-105.	1,1	25
87	Improved real-time data anomaly detection using context classification. Journal of Hydroinformatics, 2011, 13, 307-323.	1.1	25
88	Short-term forecasting of turbidity in trunk main networks. Water Research, 2017, 124, 67-76.	5.3	25
89	Pipe burst diagnostics using evidence theory. Journal of Hydroinformatics, 2011, 13, 596-608.	1.1	24
90	Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and fuzzy model parameters. Journal of Hydroinformatics, 2013, 15, 687-699.	1.1	24

#	Article	IF	CITATIONS
91	Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions. Urban Water Journal, 2014, 11, 91-107.	1.0	24
92	Integrated modelling of a coupled water-agricultural system using system dynamics. Journal of Water and Climate Change, 2013, 4, 209-231.	1.2	23
93	Using a Systematic, Multi-criteria Decision Support Framework to Evaluate Sustainable Drainage Designs. Procedia Engineering, 2014, 70, 343-352.	1.2	23
94	Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression – multi-objective genetic algorithm strategy. Urban Water Journal, 2020, 17, 154-162.	1.0	23
95	Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling. Water Resources Management, 2021, 35, 4621-4646.	1.9	23
96	Real-Time Operational Response Methodology for Reducing Failure Impacts in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	22
97	Developing a stochastic sewer model to support sewer design under water conservation measures. Journal of Hydrology, 2019, 573, 908-917.	2.3	22
98	Two new approaches for the stochastic least cost design of water distribution systems. Water Science and Technology: Water Supply, 2004, 4, 355-363.	1.0	21
99	Online Modelling of Water Distribution System Using Data Assimilation. Procedia Engineering, 2014, 70, 1261-1270.	1.2	19
100	Integrated Optimal Cost and Pressure Management for Water Distribution Systems. Procedia Engineering, 2014, 70, 1659-1668.	1.2	19
101	Comparison of two methods for the stochastic least cost design of water distribution systems. Engineering Optimization, 2006, 38, 281-297.	1.5	18
102	Artificial Intelligence Techniques for Flood Risk Management in Urban Environments. Procedia Engineering, 2014, 70, 1505-1512.	1.2	18
103	Real-time Data Assimilation in Urban Rainfall-runoff Models. Procedia Engineering, 2014, 70, 843-852.	1.2	18
104	A Resilience-Based Methodology for Improved Water Resources Adaptation Planning under Deep Uncertainty with Real World Application. Water Resources Management, 2018, 32, 2013-2031.	1.9	18
105	Assessing the Impact of Climate Change on Future Water Demand using Weather Data. Water Resources Management, 2021, 35, 1449-1462.	1.9	18
106	Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling. Geocarto International, 2022, 37, 8273-8292.	1.7	18
107	Urban Water System Metabolism Assessment Using WaterMet2 Model. Procedia Engineering, 2014, 70, 113-122.	1.2	17
108	Comparison of Info-gap and Robust Optimisation Methods for Integrated Water Resource Management under Severe Uncertainty. Procedia Engineering, 2015, 119, 874-883.	1.2	17

#	Article	IF	CITATIONS
109	A Two-stage Calibration for Detection of Leakage Hotspots in a Real Water Distribution Network. Procedia Engineering, 2017, 186, 168-176.	1.2	17
110	WaterMet ² : a tool for integrated analysis of sustainability-based performance of urban water systems. Drinking Water Engineering and Science, 2014, 7, 63-72.	0.8	17
111	Towards the long term implementation of real time control of combined sewer systems: a review of performance and influencing factors. Water Science and Technology, 2022, 85, 1295-1320.	1.2	17
112	On the prediction of underground water pipe failures: zero inflation and pipe-specific effects. Journal of Hydroinformatics, 2012, 14, 872-883.	1.1	16
113	Resilience-based performance metrics for water resources management under uncertainty. Advances in Water Resources, 2018, 116, 18-28.	1.7	16
114	Using Smart Demand-Metering Data and Customer Characteristics to Investigate Influence of Weather on Water Consumption in the UK. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	16
115	Real-time foul sewer hydraulic modelling driven by water consumption data from water distribution systems. Water Research, 2021, 188, 116544.	5.3	16
116	Burst Detection and Location in Water Distribution Systems. , 2011, , .		15
117	Using high performance techniques to accelerate demand-driven hydraulic solvers. Journal of Hydroinformatics, 2013, 15, 38-54.	1.1	15
118	Hybrid metaheuristics for multi-objective design of water distribution systems. Journal of Hydroinformatics, 2014, 16, 165-177.	1.1	15
119	A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios. Water (Switzerland), 2020, 12, 1187.	1.2	15
120	Short-Term Forecasting of Household Water Demand in the UK Using an Interpretable Machine Learning Approach. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	15
121	A review of serious games for urban water management decisions: current gaps and future research directions. Water Research, 2022, 215, 118217.	5.3	15
122	Resilience-based Performance Assessment of Water-recycling Schemes in Urban Water Systems. Procedia Engineering, 2014, 89, 719-726.	1.2	14
123	Mitigation Options for Future Water Scarcity: A Case Study in Santa Cruz Island (Galapagos) Tj ETQq1 1 0.7843	14 ₁ gBT /(Dverlock 10 Th
124	Battle of Postdisaster Response and Restoration. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 04020067.	1.3	14
125	A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows. Water Resources Management, 2021, 35, 1273-1289.	1.9	14
126	Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector. Water Resources Management, 2015, 29, 161-179.	1.9	13

#	Article	IF	CITATIONS
127	Multi-Objective Optimization of Resilient Design of the Multipurpose Reservoir in Conditions of Uncertain Climate Change. Water (Switzerland), 2018, 10, 1110.	1.2	13
128	Real-Time Water Quality Modeling with Ensemble Kalman Filter for State and Parameter Estimation in Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2019, 145, 04019049.	1.3	13
129	Predictive risk modelling of real-world wastewater network incidents. Procedia Engineering, 2015, 119, 1288-1298.	1.2	12
130	Reducing life-cycle carbon footprints in the redesign of water distribution systems. Journal of Water and Climate Change, 2013, 4, 176-192.	1.2	11
131	Optimal Water Supply System Management by Leakage Reduction and Energy Recovery. Procedia Engineering, 2014, 89, 573-580.	1.2	11
132	Estimating Rainfall Intensity Using an Image-Based Deep Learning Model. Engineering, 2023, 21, 162-174.	3.2	11
133	Life cycle sustainability assessment framework for water sector resource recovery solutions: Strengths and weaknesses. Resources, Conservation and Recycling, 2022, 180, 106151.	5.3	11
134	MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications. Statistics and Computing, 2014, 24, 739-752.	0.8	10
135	Development of a Leakage Target Setting Approach for South Korea Based on Economic Level of Leakage. Procedia Engineering, 2015, 119, 120-129.	1.2	10
136	A Response Methodology for Reducing Impacts of Failure Events in Water Distribution Networks. Procedia Engineering, 2017, 186, 218-227.	1.2	10
137	Quantifying the true potential of Real Time Control in urban drainage systems. Urban Water Journal, 2021, 18, 873-884.	1.0	10
138	A fast approach for multiobjective design of water distribution networks under demand uncertainty. Journal of Hydroinformatics, 2011, 13, 143-152.	1.1	9
139	Locating Pipe Bursts in a District Metered Area Via Online Hydraulic Modelling. Procedia Engineering, 2015, 119, 101-110.	1.2	9
140	Risk-based sensor placement methods for burst/leak detection in water distribution systems. Water Science and Technology: Water Supply, 2017, 17, 1663-1672.	1.0	9
141	Developing Decision Tree Models to Create a Predictive Blockage Likelihood Model for Real-World Wastewater Networks. Procedia Engineering, 2016, 154, 1209-1216.	1.2	8
142	Impact of Self-Cleansing Criteria Choice on the Optimal Design of Sewer Networks in South America. Water (Switzerland), 2019, 11, 1148.	1.2	8
143	Performance of LEMMO with artificial neural networks for water systems optimisation. Urban Water Journal, 2019, 16, 21-32.	1.0	8
144	Predicting impacts of water conservation with a stochastic sewer model. Water Science and Technology, 2019, 80, 2148-2157.	1.2	8

#	Article	IF	CITATIONS
145	Automated Household Water End-Use Disaggregation through Rule-Based Methodology. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	8
146	Interactive decision support methodology for near real-time response to failure events in a water distribution network. Journal of Hydroinformatics, 2021, 23, 483-499.	1.1	8
147	Near real-time detection of blockages in the proximity of combined sewer overflows using evolutionary ANNs and statistical process control. Journal of Hydroinformatics, 2022, 24, 259-273.	1.1	8
148	Decision Support System for emergency scheduling of raw water supply systems with multiple sources. Frontiers of Environmental Science and Engineering, 2013, 7, 777-786.	3.3	7
149	Risk and Reliability Analysis of Open Reservoir Water Shortages Using Optimization. Procedia Engineering, 2014, 89, 1478-1485.	1.2	7
150	Methods for Preserving Duration–Intensity Correlation on Synthetically Generated Water-Demand Pulses. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	7
151	Developing a fuzzy logic-based risk assessment for groundwater contamination from well integrity failure during hydraulic fracturing. Science of the Total Environment, 2021, 769, 145051.	3.9	7
152	Use of Metamodels in Real-Time Operation of Water Distribution Systems. Procedia Engineering, 2014, 89, 449-456.	1.2	6
153	Preserving Duration-intensity Correlation on Synthetically Generated Water Demand Pulses. Procedia Engineering, 2015, 119, 1463-1472.	1.2	6
154	Let's Get Moving and Write Software: An Open Source Project for EPANET. Journal of Water Resources Planning and Management - ASCE, 2018, 144, 01818001.	1.3	6
155	Improving the performance of an integrated urban wastewater system under future climate change and urbanisation scenarios. Journal of Water and Climate Change, 2013, 4, 232-243.	1.2	5
156	Advances in Water Mains Network Modelling for Improved Operations. Procedia Engineering, 2015, 119, 593-602.	1.2	5
157	The Use of Telemetry Data for the Identification of Issues at Combined Sewer Overflows. Procedia Engineering, 2016, 154, 1201-1208.	1.2	5
158	Foul sewer model development using geotagged information and smart water meter data. Water Research, 2021, 204, 117594.	5.3	5
159	Assessment of the Effectiveness of a Risk-reduction Measure on Pluvial Flooding and Economic Loss in Eindhoven, the Netherlands. Procedia Engineering, 2014, 70, 1619-1628.	1.2	4
160	The influence of the existing network layout on water distribution system redesign analysis. Journal of Hydroinformatics, 2014, 16, 1375-1389.	1.1	4
161	Correlation or not Correlation? This is the Question in Modelling Residential Water Demand Pulses. Procedia Engineering, 2015, 119, 1455-1462.	1.2	4
162	Decision support system for metabolism-based transition to urban water systems of tomorrow. Water Science and Technology: Water Supply, 2016, 16, 855-863.	1.0	4

#	Article	IF	CITATIONS
163	Decision support system for the long-term city metabolism planning problem. Water Science and Technology: Water Supply, 2016, 16, 542-550.	1.0	4
164	A statistical analysis on the effect of preceding dry weather on sewer blockages in South Wales. Water Science and Technology, 2019, 80, 2381-2391.	1.2	4
165	Sediment transport prediction in sewer pipes during flushing operation. Urban Water Journal, 2022, 19, 1-14.	1.0	4
166	Life cycle analysis approach to comparing environmental impacts of alternative materials used in the construction of small wastewater treatment plants. Environmental Advances, 2021, 4, 100065.	2.2	4
167	Comparative Life-Cycle Cost Analysis of Alternative Technologies for the Removal of Emerging Contaminants from Urban Wastewater. Water (Switzerland), 2022, 14, 1919.	1.2	4
168	Applications of discriminative flow pattern analysis using the CFPD method. Water Science and Technology: Water Supply, 2013, 13, 906-913.	1.0	3
169	Short-term Forecasting of Turbidity in a UK Water Distribution System. Procedia Engineering, 2016, 154, 1140-1147.	1.2	3
170	Combining classifiers to detect faults in wastewater networks. Water Science and Technology, 2018, 77, 2184-2189.	1.2	3
171	Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training. Hydrology and Earth System Sciences, 2021, 25, 2721-2738.	1.9	3
172	Multi-objective optimisation of sewer maintenance scheduling. Journal of Hydroinformatics, 2022, 24, 574-589.	1.1	3
173	Metabolism-based modelling for performance assessment of a water supply system: a case study of Reggio Emilia, Italy. Water Science and Technology: Water Supply, 2016, 16, 1221-1230.	1.0	2
174	A Graph-based Analytical Technique for the Improvement of Water Network Model Calibration. Procedia Engineering, 2016, 154, 27-35.	1.2	2
175	Water Demand Assessment of the Upper Semi-arid Sub-catchment of a Mediterranean Basin. Energy Procedia, 2017, 119, 870-882.	1.8	2
176	A Complex Network Approach for Pareto-Optimal Design of Water Distribution Networks. , 2021, , .		2
177	Editorial: Towards improved real-time management of urban water systems. Journal of Hydroinformatics, 2013, 15, 623-624.	1.1	1
178	Data-Driven Study of Discolouration Material Mobilisation in Trunk Mains. Water (Switzerland), 2017, 9, 811.	1.2	1
179	Let's Get Moving and Write Software: An Open Source Project for. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	1.3	1
180	Heuristic-Based Approach for Near-Optimal Response to Water Distribution Network Failures in Near Real Time. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	1

#		IE	CITATIONS
#	ARTICLE	IF	CHAHONS
181	Robust Staged Development of Water Supply Systems. Procedia Engineering, 2014, 89, 864-869.	1.2	0
182	Network Sectorisation Through Aggregation of Strong Connected Components. Procedia Engineering, 2017, 186, 244-251.	1.2	0
183	Design of a monitoring network: from macro to micro design. , 2021, , 155-202.		0
184	From site-focused intervention towards landscape-scale surface water management using Synthetic Stream Networks and Rapid Scenario Screening. Blue-Green Systems, 2021, 3, 13-30.	0.6	0