
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2841829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	4.9	397
2	Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurology, The, 2016, 15, 574-584.	4.9	266
3	Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Multiple Sclerosis Journal, 2015, 21, 163-170.	1.4	237
4	TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders. International Journal of Molecular Sciences, 2013, 14, 10122-10142.	1.8	185
5	Objective perimetry in glaucoma11Proprietary interest: patent application submitted Ophthalmology, 2000, 107, 2283-2299.	2.5	149
6	Axonal loss and myelin in early ON loss in postacute optic neuritis. Annals of Neurology, 2008, 64, 325-331.	2.8	144
7	Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e334.	3.1	128
8	BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1567-1578.	1.8	117
9	Latency Delay of Visual Evoked Potential Is a Real Measurement of Demyelination in a Rat Model of Optic Neuritis. , 2011, 52, 6911.		113
10	Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vision Research, 1997, 37, 2161-2169.	0.7	106
11	BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. , 2018, 9, 523.		101
12	Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology, 2014, 82, 2165-2172.	1.5	99
13	Protective Effects of 7,8-Dihydroxyflavone on Retinal Ganglion and RGC-5 Cells Against Excitotoxic and Oxidative Stress. Journal of Molecular Neuroscience, 2013, 49, 96-104.	1.1	86
14	Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain, 2019, 142, 426-442.	3.7	78
15	A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmology Glaucoma, 2018, 1, 15-22.	0.9	77
16	Multifocal VEP and OCT in optic neuritis: a topographical study of the structure–function relationship. Documenta Ophthalmologica, 2009, 118, 129-137.	1.0	75
17	Correlation between full-field and multifocal VEPs in optic neuritis. Documenta Ophthalmologica, 2008, 116, 19-27.	1.0	73
18	Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss. Reviews in the Neurosciences, 2013, 24, 301-21	1.4	73

#	Article	IF	CITATIONS
19	Differing Structural and Functional Patterns of Optic Nerve Damage in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. Ophthalmology, 2019, 126, 445-453.	2.5	69
20	Interrelationship of Optical Coherence Tomography and Multifocal Visual-Evoked Potentials after Optic Neuritis. , 2010, 51, 2770.		68
21	Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients. PLoS ONE, 2014, 9, e102546.	1.1	63
22	Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study. , 2016, 57, 2311.		62
23	Multifocal Visual Evoked Potential Latency Analysis. Archives of Neurology, 2006, 63, 847.	4.9	60
24	Axonal loss in non–optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology, 2013, 80, 242-245.	1.5	55
25	Evidence of Müller Glial Dysfunction in Patients with Aquaporin-4 Immunoglobulin G–Positive Neuromyelitis Optica Spectrum Disorder. Ophthalmology, 2019, 126, 801-810.	2.5	54
26	Multifocal Visual Evoked Potential Analysis of Inflammatory or Demyelinating Optic Neuritis. Ophthalmology, 2006, 113, 315-323.e2.	2.5	53
27	Decoding Diffusivity in Multiple Sclerosis: Analysis of Optic Radiation Lesional and Non-Lesional White Matter. PLoS ONE, 2015, 10, e0122114.	1.1	52
28	Electrophysiological Evidence for Heterogeneity of Lesions in Optic Neuritis. , 2007, 48, 4549.		50
29	Anterograde Degeneration along the Visual Pathway after Optic Nerve Injury. PLoS ONE, 2012, 7, e52061.	1.1	48
30	Latency of Multifocal Visual Evoked Potentials in Nonoptic Neuritis Eyes of Multiple Sclerosis Patients Associated With Optic Radiation Lesions. , 2014, 55, 3758.		46
31	Evidence of progressive tissue loss in the core of chronic MS lesions: A longitudinal DTI study. NeuroImage: Clinical, 2018, 17, 1028-1035.	1.4	46
32	Afferent visual pathways in multiple sclerosis: a review. Clinical and Experimental Ophthalmology, 2017, 45, 62-72.	1.3	45
33	Performance of iPadâ€based threshold perimetry in glaucoma and controls. Clinical and Experimental Ophthalmology, 2018, 46, 346-355.	1.3	45
34	Severe persistent visual field constriction associated with vigabatrin. BMJ: British Medical Journal, 1998, 316, 232-233.	2.4	44
35	FTY720 Protects Retinal Ganglion Cells in Experimental Glaucoma. , 2014, 55, 3060.		41
36	Progression of retinal ganglion cell loss in multiple sclerosis is associated with new lesions in the optic radiations. European Journal of Neurology, 2017, 24, 1392-1398.	1.7	41

#	Article	IF	CITATIONS
37	Transsynaptic Retinal Degeneration in Optic Neuropathies: Optical Coherence Tomography Study. , 2012, 53, 1271.		40
38	Optic Nerve Diffusion Tensor Imaging after Acute Optic Neuritis Predicts Axonal and Visual Outcomes. PLoS ONE, 2013, 8, e83825.	1.1	40
39	Inner Nuclear Layer Thickening Is Inversley Proportional to Retinal Ganglion Cell Loss in Optic Neuritis. PLoS ONE, 2013, 8, e78341.	1.1	39
40	Assessment of Opicinumab in Acute Optic Neuritis Using Multifocal Visual Evoked Potential. CNS Drugs, 2018, 32, 1159-1171.	2.7	38
41	Objective Perimetry in Glaucoma. Survey of Ophthalmology, 1999, 43, S199-S209.	1.7	36
42	Diffusion Tensor Imaging Correlates of Visual Impairment in Multiple Sclerosis and Chronic Optic Neuritis. , 2012, 53, 825.		36
43	Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology, 2020, 94, e407-e418.	1.5	36
44	Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1643-1649.	1.8	34
45	Electrophysiology: A review of signal origins and applications to investigating glaucoma. Australian and New Zealand Journal of Ophthalmology, 1998, 26, 71-85.	0.4	32
46	Fellow eye changes in optic neuritis correlate with the risk of multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 928-932.	1.4	31
47	The electrophysiological assessment of visual function in Multiple Sclerosis. Clinical Neurophysiology Practice, 2019, 4, 90-96.	0.6	30
48	Expansion of chronic lesions is linked to disease progression in relapsing–remitting multiple sclerosis patients. Multiple Sclerosis Journal, 2021, 27, 1533-1542.	1.4	29
49	Multifocal Blue-on-Yellow Visual Evoked Potentials in Early Glaucoma. Ophthalmology, 2007, 114, 1613-1621.	2.5	28
50	Brain derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling. Biochemical and Biophysical Research Communications, 2014, 454, 381-386.	1.0	28
51	Progressive inner nuclear layer dysfunction in non-optic neuritis eyes in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e427.	3.1	28
52	Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Documenta Ophthalmologica, 2011, 123, 109-119.	1.0	27
53	Multifocal VEP assessment of optic neuritis evolution. Clinical Neurophysiology, 2015, 126, 1617-1623.	0.7	27
54	MS-GAN: GAN-Based Semantic Segmentation of Multiple Sclerosis Lesions in Brain Magnetic Resonance Imaging. , 2018, , .		27

#	Article	IF	CITATIONS
55	The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma. Current Opinion in Ophthalmology, 1999, 10, 140-146.	1.3	25
56	Normalization of Visual Evoked Potentials Using Underlying Electroencephalogram Levels Improves Amplitude Reproducibility in Rats. , 2012, 53, 1473.		24
57	A Topographical Relationship Between Visual Field Defects and Optic Radiation Changes in Glaucoma. , 2014, 55, 5770.		24
58	Optical Coherence Tomography in the Diagnosis and Management of Optic Neuritis and Multiple Sclerosis. Ophthalmic Surgery Lasers and Imaging Retina, 2011, 42, S28-40.	0.4	24
59	Comparison of Objective Diagnostic Tests in Glaucoma. Journal of Glaucoma, 2006, 15, 110-116.	0.8	23
60	Magnetisation transfer ratio in optic neuritis is associated with axonal loss, but not with demyelination. NeuroImage, 2011, 56, 21-26.	2.1	23
61	Lesion activity and chronic demyelination are the major determinants of brain atrophy in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	3.1	22
62	Parallel Changes in Structural and Functional Measures of Optic Nerve Myelination after Optic Neuritis. PLoS ONE, 2015, 10, e0121084.	1.1	21
63	Chronic demyelination exacerbates neuroaxonal loss in patients with MS with unilateral optic neuritis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	21
64	Dichoptic Stimulation Improves Detection of Glaucoma with Multifocal Visual Evoked Potentials. , 2007, 48, 4590.		19
65	Relationship between chronic demyelination of the optic nerve and short term axonal loss. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 311-314.	0.9	18
66	Reproducibility of multifocal VEP latency using different stimulus presentations. Documenta Ophthalmologica, 2012, 125, 43-49.	1.0	17
67	Diffusivity in multiple sclerosis lesions: At the cutting edge?. NeuroImage: Clinical, 2016, 12, 219-226.	1.4	17
68	Electrophysiology: a review of signal origins and applications to investigating glaucoma. Australian and New Zealand Journal of Ophthalmology, 1998, 26, 71-85.	0.4	17
69	Optic Nerve Magnetisation Transfer Ratio after Acute Optic Neuritis Predicts Axonal and Visual Outcomes. PLoS ONE, 2012, 7, e52291.	1.1	16
70	Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis. Journal of Ophthalmology, 2016, 2016, 1-6.	0.6	16
71	Identifying Preperimetric Functional Loss in Glaucoma. Ophthalmology, 2009, 116, 1134-1141.	2.5	14
72	Multifocal Visual Evoked Potential (mfVEP) and Pattern-Reversal Visual Evoked Potential Changes in Patients with Visual Pathway Disorders: A Case Series. Neuro-Ophthalmology, 2015, 39, 220-233.	0.4	14

#	Article	IF	CITATIONS
73	Ophthalmic manifestations of demyelination secondary to etanercept. Clinical and Experimental Ophthalmology, 2008, 36, 392-394.	1.3	13
74	Progressive Injury in Chronic Multiple Sclerosis Lesions Is Gender-Specific: A DTI Study. PLoS ONE, 2016, 11, e0149245.	1.1	13
75	Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Survey of Ophthalmology, 2022, 67, 411-426.	1.7	13
76	Electrophysiological and psychophysical evidence for the development of magnocellular function in children. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 38-40.	0.4	12
77	Temporal analysis of the chromatic flash VEP—separate colour and luminance contrast components. Vision Research, 1998, 38, 3979-4000.	0.7	12
78	Intertest Variability of mfVEP Amplitude: Reducing its Effect on the Interpretation of Sequential Tests. Documenta Ophthalmologica, 2005, 111, 159-167.	1.0	12
79	Biomedical signal acquisition with streaming wireless communication for recording evoked potentials. Documenta Ophthalmologica, 2012, 125, 149-159.	1.0	12
80	Axonal Loss in a Rat Model of Optic Neuritis Is Closely Correlated with Visual Evoked Potential Amplitudes Using Electroencephalogram-based Scaling. , 2012, 53, 3662.		12
81	Night blindness following low-dose isotretinoin. Journal of the European Academy of Dermatology and Venereology, 2008, 22, 893-894.	1.3	11
82	Gaussian wavelet transform and classifier to reliably estimate latency of multifocal visual evoked potentials (mfVEP). Vision Research, 2012, 52, 79-87.	0.7	11
83	Correlation between inner retinal layer thickness and cognitive function in HIV. Aids, 2018, 32, 1485-1490.	1.0	11
84	New magnetic resonance imaging techniques identify cortical changes in glaucoma. Clinical and Experimental Ophthalmology, 2013, 41, 3-5.	1.3	10
85	Multifocal Visual Evoked Responses to Dichoptic Stimulation Using Virtual Reality Goggles: Multifocal VER to Dichoptic Stimulation. Documenta Ophthalmologica, 2006, 112, 189-199.	1.0	9
86	Physiological Correlates and Predictors of Functional Recovery After Chiasmal Decompression. Journal of Neuro-Ophthalmology, 2015, 35, 348-352.	0.4	9
87	White matter tract-specific quantitative analysis in multiple sclerosis: Comparison of optic radiation reconstruction techniques. PLoS ONE, 2018, 13, e0191131.	1.1	9
88	The expansion and severity of chronic MS lesions follows a periventricular gradient. Multiple Sclerosis Journal, 2022, 28, 1504-1514.	1.4	9
89	Exploring the methods of data analysis in multifocal visual evoked potentials. Documenta Ophthalmologica, 2016, 133, 41-48.	1.0	8
90	Pathophysiological basis of low contrast visual acuity loss in multiple sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1505-1512.	1.7	8

#	Article	IF	CITATIONS
91	Diffusivity in the core of chronic multiple sclerosis lesions. PLoS ONE, 2018, 13, e0194142.	1.1	8
92	Sex-Specific Effect of BDNF Val66Met Genotypes on the Progression of Open-Angle Glaucoma. , 2019, 60, 1069.		8
93	Interferon- \hat{I}^2 Is Less Effective Than Other Drugs in Controlling the Rate of Retinal Ganglion Cell Loss in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	8
94	Latency of Multifocal Visual Evoked Potential in Multiple Sclerosis: A Visual Pathway Biomarker for Clinical Trials of Remyelinating Therapies. Journal of Clinical Neurophysiology, 2021, 38, 186-191.	0.9	8
95	Low-Luminance Contrast Stimulation Is Optimal for Early Detection of Glaucoma Using Multifocal Visual Evoked Potentials. , 2011, 52, 3744.		7
96	Multifocal visual evoked potentials in chronic inflammatory demyelinating polyneuropathy. Annals of Clinical and Translational Neurology, 2018, 5, 952-961.	1.7	7
97	Differentiating axonal loss and demyelination in chronic MS lesions: A novel approach using single streamline diffusivity analysis. PLoS ONE, 2021, 16, e0244766.	1.1	7
98	Expansion of chronic MS lesions is associated with an increase of radial diffusivity in periplaque white matter. Multiple Sclerosis Journal, 2022, 28, 697-706.	1.4	7
99	Temporal analysis of the VEP: evidence for separable magnocellular and parvocellular contributions. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 32-34.	0.4	6
100	Focus on molecules: Sphingosine 1 phosphate (S1P). Experimental Eye Research, 2012, 103, 119-120.	1.2	6
101	Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination. Journal of Visualized Experiments, 2015, , e52934.	0.2	6
102	Mechanism of delayed conduction of fellow eyes in patients with optic neuritis. International Journal of Ophthalmology, 2018, 11, 329-332.	0.5	6
103	Multiple sclerosis: structural and functional integrity of the visual system following alemtuzumab therapy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1319-1324.	0.9	6
104	Software for analysing multifocal visual evoked potential signal latency progression. Computers in Biology and Medicine, 2015, 59, 134-141.	3.9	5
105	Temporal analysis of the topographic ERG: Chromatic versus achromatic stimulation. Vision Research, 1998, 38, 1047-1062.	0.7	4
106	Optimizing the Detection of Preperimetric Glaucoma by Combining Structural and Functional Tests. , 2015, 56, 7794.		4
107	Visual function in velocardiofacial syndrome. Australian and New Zealand Journal of Ophthalmology, 1996, 24, 53-55.	0.4	3
108	Effect of fixation tasks on multifocal visual evoked potentials. Clinical and Experimental Ophthalmology, 2005, 33, 499-504.	1.3	3

#	Article	IF	CITATIONS
109	Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal, 2022, 28, 757-767.	1.4	3
110	Analysis of Multifocal Visual Evoked Potentials Using Artificial Intelligence Algorithms. Translational Vision Science and Technology, 2022, 11, 10.	1.1	3
111	Visual Evoked Potential Recording in Rodents. Neuromethods, 2013, , 275-285.	0.2	2
112	Association Between BDNF Val66Met Polymorphism and Optic Neuritis Damage in Neuromyelitis Optica Spectrum Disorder. Frontiers in Neuroscience, 2019, 13, 1236.	1.4	2
113	Dichoptic Suppression of mfVEP Amplitude: Effect of Retinal Eccentricity and Simulated Unilateral Visual Impairment. , 2010, 51, 6549.		1
114	Effect of check size and stimulation rate on blue-yellow multifocal visual evoked potentials. Clinical and Experimental Ophthalmology, 2004, 32, 270-274.	1.3	0
115	CD10: A POTENTIAL NON-HLA ANTIGEN IN RENAL TRANSPLANTION. Transplantation, 2008, 86, 507.	0.5	0
116	The Visual Evoked Potential in Humans. Neuromethods, 2013, , 287-299.	0.2	0
117	Wallerian Degeneration in the Corticospinal Tract Following Tumefactive Demyelination: Conventional and Advanced Magnetic Resonance Imaging. Canadian Journal of Neurological Sciences, 2016, 43, 726-727.	0.3	0
118	Reply. Ophthalmology, 2019, 126, e64-e65.	2.5	0
119	FUNCTIONAL AEROBIC IMPAIRMENT (FAI) IN ADULTS WITH HIV SEROPOSITIVITY. Medicine and Science in Sports and Exercise, 2001, 33, S27.	0.2	Ο
120	Title is missing!. , 2021, 16, e0244766.		0
121	Title is missing!. , 2021, 16, e0244766.		0
122	Title is missing!. , 2021, 16, e0244766.		0
123	Title is missing!. , 2021, 16, e0244766.		0
124	Title is missing!. , 2021, 16, e0244766.		0
125	Title is missing!. , 2021, 16, e0244766.		Ο