
Fang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2841800/publications.pdf Version: 2024-02-01

FANC TANC

#	Article	IF	CITATIONS
1	Functional Mechanism of Antimicrobial Peptide Bomidin and Its Safety for Macrobrachium rosenbergii. Probiotics and Antimicrobial Proteins, 2022, 14, 169-179.	3.9	5
2	Comparative transcriptomic analysis provides insights into transcription mechanisms of Vibrio parahaemolyticus T3SS during interaction with HeLa cells. Brazilian Journal of Microbiology, 2022, 53, 289-301.	2.0	1
3	Development of a sensitive chicken IgY-based enzyme-linked immunosorbent assay for detection of mebendazole in pork and mutton. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2022, 57, 47-53.	1.5	3
4	Extraintestinal Pathogenic <i>Escherichia coli</i> Utilizes Surface-Located Elongation Factor G to Acquire Iron from Holo-Transferrin. Microbiology Spectrum, 2022, 10, e0166221.	3.0	1
5	Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Applied Microbiology and Biotechnology, 2022, 106, 2299-2310.	3.6	13
6	A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model. Veterinary Microbiology, 2022, 268, 109425.	1.9	2
7	Extraintestinal pathogenic <i>Escherichia coli</i> utilizes the surface-expressed elongation factor Tu to bind and acquire iron from holo-transferrin. Virulence, 2022, 13, 698-713.	4.4	1
8	Guanylate-Binding protein 2b regulates the AMPK/mTOR/ULK1 signalling pathway to induce autophagy during <i>Mycobacterium bovis</i> infection. Virulence, 2022, 13, 875-889.	4.4	1
9	Phage Cocktail Targeting STEC O157:H7 Has Comparable Efficacy and Superior Recovery Compared with Enrofloxacin in an Enteric Murine Model. Microbiology Spectrum, 2022, 10, e0023222.	3.0	9
10	Chickenâ€source <i>Escherichia coli</i> within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic <i>E. coli</i> causing human infections. Transboundary and Emerging Diseases, 2021, 68, 880-895.	3.0	26
11	VscF in T3SS1 Helps to Translocate VPA0226 in Vibrio parahaemolyticus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 652432.	3.9	6
12	Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. Cell Host and Microbe, 2021, 29, 681-688.	11.0	36
13	Novel Host Recognition Mechanism of the K1 Capsule-Specific Phage of <i>Escherichia coli</i> : Capsular Polysaccharide as the First Receptor and Lipopolysaccharide as the Secondary Receptor. Journal of Virology, 2021, 95, e0092021.	3.4	24
14	Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Veterinary Research, 2021, 52, 118.	3.0	18
15	Multivalent nanobody as capture antibody-based enzyme linked immunosorbent assay for detection of 3-phenoxybenzoic acid in urine. Analytical Biochemistry, 2021, 632, 114390.	2.4	3
16	Multivalent nanobody–biotin amplified enzyme-linked immunosorbent assay for the environmental detection of 3-phenoxybenzoic acid. Analytical Methods, 2021, 13, 5247-5253.	2.7	5
17	orf6 and orf10 in Prophage phiv142-3 Enhance the Iron-Acquisition Ability and Resistance of Avian Pathogenic Escherichia coli Strain DE142 to Serum. Frontiers in Veterinary Science, 2020, 7, 588708.	2.2	5
18	Prophage phiv205-1 facilitates biofilm formation and pathogenicity of avian pathogenic Escherichia coli strain DE205B. Veterinary Microbiology, 2020, 247, 108752.	1.9	9

Fang Tang

#	Article	lF	CITATIONS
19	Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Mikrochimica Acta, 2020, 187, 642.	5.0	12
20	AÂmolecule capturer analysis system for visual determination of avian pathogenic Escherichia coli serotype O78 using a lateral flow assay. Mikrochimica Acta, 2020, 187, 198.	5.0	6
21	Rapid and accurate detection of <i>Escherichia coli</i> O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst, The, 2020, 145, 3106-3115.	3.5	72
22	Identification of ireA, 0007, 0008, and 2235 as TonB-dependent receptors in the avian pathogenic Escherichia coli strain DE205B. Veterinary Research, 2020, 51, 5.	3.0	4
23	Factor H Is Bound by Outer Membrane-Displayed Carbohydrate Metabolism Enzymes of Extraintestinal Pathogenic Escherichia coli and Contributes to Opsonophagocytosis Resistance in Bacteria. Frontiers in Cellular and Infection Microbiology, 2020, 10, 592906.	3.9	2
24	orf20 in prophage phiv142-3 contributes to the adhesion and colonization ability of avian pathogenic Escherichia coli strain DE142 by affecting the formation of flagella and I fimbriae. Veterinary Microbiology, 2019, 235, 301-309.	1.9	6
25	Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Veterinary Microbiology, 2019, 239, 108483.	1.9	20
26	Population structure and antimicrobial resistance traits of avianâ€origin <i>mcrâ€l </i> â€positive <i>Escherichia coli</i> in Eastern China, 2015 to 2017. Transboundary and Emerging Diseases, 2019, 66, 1920-1929.	3.0	30
27	Acetate metabolic requirement of avian pathogenic Escherichia coli promotes its intracellular proliferation within macrophage. Veterinary Research, 2019, 50, 31.	3.0	26
28	Comparative genomic analysis of 127 Escherichia coli strains isolated from domestic animals with diarrhea in China. BMC Genomics, 2019, 20, 212.	2.8	10
29	Isolation and characterization of a broad-spectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice. Microbial Pathogenesis, 2019, 126, 193-198.	2.9	36
30	Fast and Highly Sensitive Detection of Pathogens Wreathed with Magnetic Nanoparticles Using Dark-Field Microscopy. ACS Sensors, 2018, 3, 2175-2181.	7.8	17
31	Ultrasensitive and rapid count of Escherichia coli using magnetic nanoparticle probe under dark-field microscope. BMC Microbiology, 2018, 18, 100.	3.3	14
32	A Novel PhoP/PhoQ Regulation Pathway Modulates the Survival of Extraintestinal Pathogenic Escherichia coli in Macrophages. Frontiers in Immunology, 2018, 9, 788.	4.8	32
33	Prophage phiv142-3 enhances the colonization and resistance to environmental stresses of avian pathogenic Escherichia coli. Veterinary Microbiology, 2018, 218, 70-77.	1.9	18
34	Iron-regulated gene ireA in avian pathogenic Escherichia coli participates in adhesion and stress-resistance. BMC Veterinary Research, 2016, 12, 167.	1.9	17
35	The YfcO fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli inÂvivo and inAvitro. Microbial Pathogenesis, 2016, 100, 56-61.	2.9	7
36	AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection. Scientific Reports, 2016, 6, 25085.	3.3	15

Fang Tang

#	Article	IF	CITATIONS
37	lbeR Facilitates Stress-Resistance, Invasion and Pathogenicity of Avian Pathogenic Escherichia coli. PLoS ONE, 2015, 10, e0119698.	2.5	10
38	Prophage Lysin Ply30 Protects Mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus Infections. Applied and Environmental Microbiology, 2015, 81, 7377-7384.	3.1	19
39	The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 10639-10654.	3.6	16
40	Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics, 2013, 101, 336-344.	2.9	41
41	Complete Genome Sequence of the Streptococcus suis Temperate Bacteriophage ϕNJ2. Genome Announcements, 2013, 1, .	0.8	2
42	Lysogenic Streptococcus suis Isolate SS2-4 Containing Prophage SMP Showed Increased Mortality in Zebra Fish Compared to the Wild-Type Isolate. PLoS ONE, 2013, 8, e54227.	2.5	15
43	Complete Genome Sequence of T4-Like Escherichia coli Bacteriophage HX01. Journal of Virology, 2012, 86, 13871-13871.	3.4	2
44	Immunoproteomic analysis of bacterial proteins of Actinobacillus pleuropneumoniae serotype 1. Proteome Science, 2011, 9, 32.	1.7	14
45	Humoral regulation of physiological sleep: cytokines and GHRH. Journal of Sleep Research, 1999, 8, 53-59.	3.2	193