
Fengjiao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2841248/publications.pdf Version: 2024-02-01

FENCIAO HE

#	Article	IF	CITATIONS
1	Mycobacterium tuberculosis piezoelectric sensor based on AuNPs-mediated enzyme assisted signal amplification. Talanta, 2022, 236, 122902.	5.5	9
2	Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification. Analytica Chimica Acta, 2022, 1190, 339266.	5.4	7
3	Electrochemical biosensor for rapid detection of bacteria based on facile synthesis of silver wire across electrodes. Biosensors and Bioelectronics, 2020, 168, 112527.	10.1	30
4	Clean & environmentally friendly regeneration of Fe-surface cleaning pickling solutions. Green Chemistry, 2020, 22, 8728-8733.	9.0	2
5	Highly electrically conductive two-dimensional Ti3C2 Mxenes-based 16S rDNA electrochemical sensor for detecting Mycobacterium tuberculosis. Analytica Chimica Acta, 2020, 1123, 9-17.	5.4	40
6	An ultrasensitive electrochemical biosensor for <i>Pseudomonas aeruginosa</i> assay based on a rolling circle amplification-assisted multipedal DNA walker. Chemical Communications, 2020, 56, 6273-6276.	4.1	26
7	The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Biosensors and Bioelectronics, 2019, 138, 111322.	10.1	16
8	A supersensitive MSPQC bacterium sensor based on 16S rRNA and "DNA-RNA switch― Biosensors and Bioelectronics, 2019, 138, 111302.	10.1	13
9	<i>Mycobacterium tuberculosis</i> strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs–DNA. ACS Sensors, 2019, 4, 849-855.	7.8	57
10	A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. Biosensors and Bioelectronics, 2019, 132, 224-229.	10.1	41
11	Insight into the Mechanism of the Fe-Ni Alloys Co-Deposition from Poly-Nuclear Complexes. Journal of the Electrochemical Society, 2018, 165, D681-D686.	2.9	8
12	Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Biosensors and Bioelectronics, 2018, 118, 9-15.	10.1	35
13	A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. Journal of Microbiological Methods, 2017, 133, 69-75.	1.6	32
14	Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosensors and Bioelectronics, 2017, 98, 261-266.	10.1	30
15	Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2016, 77, 799-804.	10.1	49
16	Novel S-MSPQC cell sensor for real time monitoring the injury of endothelial cell by LPS and assessing the drug effect on this injury. Biosensors and Bioelectronics, 2015, 71, 62-67.	10.1	6
17	A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosensors and Bioelectronics, 2015, 65, 314-319.	10.1	195
18	Construction and Application of a Novel Impedance Sensor for Siderophore. Analytical Letters, 2015, 48, 259-268.	1.8	2

Fengjiao He

#	Article	IF	CITATIONS
19	Multichannel Series Piezoelectric Quartz Crystal Cell Sensor for Real Time and Quantitative Monitoring of the Living Cell and Assessment of Cytotoxicity. Analytical Chemistry, 2014, 86, 10415-10421.	6.5	17
20	Novel Phage Amplified Multichannel Series Piezoelectric Quartz Crystal Sensor for Rapid and Sensitive Detection of <i>Mycobacterium tuberculosis</i> . Analytical Chemistry, 2012, 84, 939-946.	6.5	40
21	The construction and application of a molecular wire piezoelectric urease-producing bacteria sensor. Analytical Methods, 2012, 4, 2145.	2.7	0
22	New MSPQC-PLS method for the early clinic identification of commonly encountered Candida species. Talanta, 2010, 80, 1210-1215.	5.5	5
23	A New Sensor Method for Studying the Effect of Gentamicin and Cefotaxime Combination AgainstEscherichia coli. Analytical Letters, 2009, 42, 2683-2692.	1.8	0
24	A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2008, 24, 403-409.	10.1	51
25	A new antimicrobial susceptibility testing method of Escherichia coli against ampicillin by MSPQC. Journal of Microbiological Methods, 2007, 68, 563-567.	1.6	11
26	Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. Talanta, 2004, 62, 271-277.	5.5	31
27	A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 2003, 59, 935-941.	5.5	39
28	Rapid Diagnosis of <i>M. tuberculosis</i> Using a Piezoelectric Immunosensor. Analytical Sciences, 2002, 18, 397-401.	1.6	45
29	A TSM immunosensor for detection of M. tuberculosis with a new membrane material. Sensors and Actuators B: Chemical, 2002, 85, 284-290.	7.8	29
30	Determination of Total Amount of Carbohydrates in Serum and Cerebrospinal Fluid with Thickness-Shear-Mode Acoustic Wave Sensor Analytical Sciences, 1995, 11, 1001-1004.	1.6	1