Maila Castellano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecoâ€Friendly Needleless Electrospinning and Tannic Acid Functionalization of Polyurethane Nanofibers with Tunable Wettability and Mechanical Performances. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
2	Dynamic Pressure Measurements During Vitrectomy in a Model of the Eye. Translational Vision Science and Technology, 2022, 11, 21.	2.2	1
3	Electrospun alginate mats embedding silver nanoparticles with bioactive properties. International Journal of Biological Macromolecules, 2022, 213, 427-434.	7.5	4
4	Improved dielectric properties of poly(vinylidene fluoride)– <scp>BaTiO₃</scp> composites by solventâ€free processing. Journal of Applied Polymer Science, 2021, 138, 50049.	2.6	11
5	Effect of Crosslinking Type on the Physical-Chemical Properties and Biocompatibility of Chitosan-Based Electrospun Membranes. Polymers, 2021, 13, 831.	4.5	32
6	Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Applied Sciences (Switzerland), 2021, 11, 3532.	2.5	44
7	Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Materials Science and Engineering C, 2021, 124, 112067.	7.3	27
8	Composite Poly(vinyl alcohol)-Based Nanofibers Embedding Differently-Shaped Gold Nanoparticles: Preparation and Characterization. Polymers, 2021, 13, 1604.	4.5	2
9	Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydrate Polymers, 2021, 264, 118042.	10.2	50
10	Crystallization of a Self-Assembling Nucleator in Poly(<scp>l</scp> -lactide) Melt. Crystal Growth and Design, 2021, 21, 5880-5888.	3.0	9
11	Potential Biomedical Applications of Collagen Filaments derived from the Marine Demosponges Ircinia oros (Schmidt, 1864) and Sarcotragus foetidus (Schmidt, 1862). Marine Drugs, 2021, 19, 563.	4.6	12
12	An Upâ€ŧoâ€Đate Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Advanced Materials Interfaces, 2021, 8, 2100809.	3.7	44
13	Composite Water-Borne Polyurethane Nanofibrous Electrospun Membranes with Photocatalytic Properties. ACS Applied Polymer Materials, 2021, 3, 6157-6166.	4.4	15
14	Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydrate Polymers, 2020, 227, 115371.	10.2	81
15	Agar gel strength: A correlation study between chemical composition and rheological properties. European Polymer Journal, 2020, 123, 109442.	5.4	59
16	Alginate-Based Electrospun Membranes Containing ZnO Nanoparticles as Potential Wound Healing Patches: Biological, Mechanical, and Physicochemical Characterization. ACS Applied Materials & Interfaces, 2020, 12, 3371-3381.	8.0	90
17	PVDFâ€based composites containing PZT particles: How processing affects the final properties. Journal of Applied Polymer Science, 2020, 137, 48871.	2.6	15
18	Investigation of the Mechanical and Dynamic-Mechanical Properties of Electrospun Polyvinylpyrrolidone Membranes: A Design of Experiment Approach. Polymers, 2020, 12, 1524.	4.5	18

MAILA CASTELLANO

#	Article	IF	CITATIONS
19	Heterogeneous Nucleation and Self-Nucleation of Isotactic Polypropylene Microdroplets in Immiscible Blends: From Nucleation to Growth-Dominated Crystallization. Macromolecules, 2020, 53, 5980-5991.	4.8	38
20	Nanocomposite alginate-based electrospun membranes as novel adsorbent systems. International Journal of Biological Macromolecules, 2020, 165, 1939-1948.	7.5	28
21	Multilayer Alginate–Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS Applied Materials & Interfaces, 2020, 12, 31162-31171.	8.0	71
22	Fluid Dynamic Assessment of Hypersonic and Guillotine Vitrectomy Probes in Viscoelastic Vitreous Substitutes. Translational Vision Science and Technology, 2020, 9, 9.	2.2	10
23	Sodium Alginate Cross-Linkable Planar 1D Photonic Crystals as a Promising Tool for Pb2+ Detection in Water. Chemosensors, 2020, 8, 37.	3.6	9
24	Depolymerization of sodium alginate in saline solutions via ultrasonic treatments: A rheological characterization. Food Hydrocolloids, 2020, 109, 106128.	10.7	24
25	Rheological, Mechanical and Morphological Characterization of Fillers in the Nautical Field: The Role of Dispersing Agents on Composite Materials. Polymers, 2020, 12, 1339.	4.5	4
26	Chitosan-based electrospun membranes: Effects of solution viscosity, coagulant and crosslinker. Carbohydrate Polymers, 2020, 235, 115976.	10.2	63
27	Univariate and multivariate strategies for the rheological tests evaluation: Influence of additives in composite materials. Journal of Applied Polymer Science, 2020, 137, 49019.	2.6	1
28	Rheological properties of sodium alginate solutions in the presence of added salt: an application of Kulicke equation. Rheologica Acta, 2020, 59, 365-374.	2.4	40
29	Chemical modification of hemp fibres by plasma treatment for eco-composites based on biodegradable polyester. Journal of Materials Science, 2019, 54, 14367-14377.	3.7	15
30	Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. European Polymer Journal, 2019, 118, 586-594.	5.4	85
31	Sodium alginate solutions: correlation between rheological properties and spinnability. Journal of Materials Science, 2019, 54, 8034-8046.	3.7	58
32	Electrospun composite mats of alginate with embedded silver nanoparticles. Journal of Thermal Analysis and Calorimetry, 2019, 137, 767-778.	3.6	46
33	Porous polydimethylsiloxane membranes loaded with low-temperature crystallized TiO2 NPs for detachable antibacterial films. Journal of Materials Science, 2019, 54, 1665-1676.	3.7	12
34	A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid. Carbohydrate Polymers, 2019, 203, 349-355.	10.2	62
35	Alginate and alginate/hyaluronic acid membranes generated by electrospinning in wet conditions: Relationship between solution viscosity and spinnability. Journal of Applied Polymer Science, 2018, 135, 46390.	2.6	27
36	Alginate-polymethacrylate hybrid hydrogels for potential osteochondral tissue regeneration. Carbohydrate Polymers, 2018, 185, 56-62.	10.2	50

MAILA CASTELLANO

#	Article	IF	CITATIONS
37	Soft, hyper-elastic and highly-stable silicone-organo-clay dielectric elastomer for energy harvesting and actuation applications. Composites Part B: Engineering, 2018, 146, 13-19.	12.0	25
38	Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer, 2018, 146, 396-406.	3.8	25
39	The effects of morpholine pre-treated and carboxymethylated cellulose nanofibrils on the properties of alginate-based hydrogels. Carbohydrate Polymers, 2018, 198, 320-327.	10.2	27
40	Characterization of hyaluronic acid by dynamic light scattering and rheological techniques. AIP Conference Proceedings, 2018, , .	0.4	4
41	PVDF/BaTiO3 composites as dielectric materials: Influence of processing on properties. AIP Conference Proceedings, 2018, , .	0.4	2
42	Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Marine Drugs, 2018, 16, 111.	4.6	54
43	Innovative Mesoporous Nanosilicas: SBR Nanocomposite for Low Environmental Impact Tread Tyre. Journal of Nanoscience and Nanotechnology, 2018, 18, 1503-1515.	0.9	2
44	Polyacrylamide hydrogels for stone restoration: Effect of salt solutions on swelling/deswelling degree and dynamic correlation length. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
45	Alginate gelling process: Use of bivalent ions rich microspheres. Polymer Engineering and Science, 2017, 57, 531-536.	3.1	32
46	Gelling process of sodium alginate with bivalent ions rich microsphere: Nature of bivalent ions. AIP Conference Proceedings, 2016, , .	0.4	1
47	Poly(dimethylsiloxane)/TiO2 Photocatalytic Membranes Obtained by Different Electrospinning Systems. Journal of Nanoscience and Nanotechnology, 2016, 16, 6587-6594.	0.9	5
48	Evaluation of enthalpy of mixing by calorimetric method: effect of hydrogen bonding in poly(4-hydroxy styrene)-based blends. Polymer Bulletin, 2015, 72, 743-753.	3.3	0
49	Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres. Carbohydrate Polymers, 2015, 134, 767-774.	10.2	56
50	Hybrid ZnO:polystyrene nanocomposite for allâ€polymer photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 158-162.	0.8	30
51	Hydrophobation of silica surface by silylation with new organo-silanes bearing a polybutadiene oligomer tail. Polymer Composites, 2014, 35, 1603-1613.	4.6	15
52	Fluoro-modified elastomeric polyurethanes: effects of synthesis procedure on properties and morphology. Journal of Materials Science, 2014, 49, 2519-2533.	3.7	9
53	Dependence of surface properties of silylated silica on the length of silane arms. Adsorption, 2012, 18, 307-320.	3.0	16
54	Polyester-based biocomposites containing wool fibres. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1113-1119.	7.6	50

#	Article	IF	CITATIONS
55	Structural investigation of Poly(ethylene terephthalate)/Poly(trimethylene terephthalate) transesterificated blends. Journal of Polymer Research, 2012, 19, 1.	2.4	2
56	Modulation of barrier properties of monolayer films from blends of polyethylene with ethyleneâ€ <i>co</i> â€norbornene. Journal of Applied Polymer Science, 2011, 121, 3020-3027.	2.6	7
57	A New Modifier for Silica in Reinforcing SBR Elastomers for the Tyre Industry. Macromolecular Materials and Engineering, 2011, 296, 455-464.	3.6	42
58	Reactive blending of aromatic polyesters: Thermal and Xâ€ray analysis of meltâ€blended poly(ethylene) Tj ETQq0	0.0 rgBT	Overlock 10
59	Bulk and surface properties of commercial kaolins. Applied Clay Science, 2010, 48, 446-454.	5.2	92
60	Morphology and Viscoelastic Behaviour of a Silica Filled Styrene/Butadiene Random Copolymer. Macromolecular Materials and Engineering, 2008, 293, 178-187.	3.6	15
61	Influence of the Silane Modifiers on the Surface Thermodynamic Characteristics and Dispersion of the Silica into Elastomer Compounds. Journal of Physical Chemistry B, 2007, 111, 4495-4502.	2.6	77
62	An IR study of the chemistry of triethoxysilane at the surface of metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 181-190.	4.7	10
63	Reactive Blending of Aromatic Polyesters: Thermal Behaviour of Co-precipitated Mixtures PTT/PET. Macromolecular Chemistry and Physics, 2006, 207, 242-251.	2.2	16
64	Surface modification of silica: 1. Thermodynamic aspects and effect on elastomer reinforcement. Polymer, 2005, 46, 695-703.	3.8	101
65	Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur?. Journal of Colloid and Interface Science, 2004, 273, 505-511.	9.4	144
66	Reactions of cellulose and wood superficial hydroxy groups with organometallic compounds. Polymer International, 2004, 53, 7-11.	3.1	20
67	A Fourier Transform Infrared (FTIR) Study of the Reaction of Triethoxysilane (TES) and Bis[3-triethoxysilylpropyl]tetrasulfane (TESPT) with the Surface of Amorphous Silica. Journal of Physical Chemistry B, 2004, 108, 3563-3572.	2.6	90
68	A Morphometric Investigation by TEM/AIA on Elastomer-Based Compounds Filled with an Untreated Precipitated Silica. Rubber Chemistry and Technology, 2003, 76, 899-911.	1.2	8
69	Investigation into the interactions between filler and elastomers used for tyre production. Macromolecular Symposia, 2003, 193, 195-208.	0.7	11
70	EPR spin labelling studies of molecular dynamics in elastomer-silica composites. Research on Chemical Intermediates, 2002, 28, 191-204.	2.7	3
71	Dielectric, Raman, calorimetric and X-ray diffraction studies of a polycarbazolyldiacetylene. Synthetic Metals, 2001, 116, 207-211.	3.9	2
72	Reactive blending of polyamide 6,6 and Vectra A. Polymer, 2001, 42, 8035-8042.	3.8	21

#	Article	IF	CITATIONS
73	Poly(ether ether ketone) solutions suitable for microfiltration membrane preparation. Journal of Applied Polymer Science, 2001, 81, 2550-2555.	2.6	6
74	Styrene–diene block copolymers as embedding matrices for polymer-dispersed liquid crystal films. Polymer, 2001, 42, 2427-2438.	3.8	10