Xiaoyuan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840410/publications.pdf

Version: 2024-02-01

134 6,162 38 74
papers citations h-index g-index

137 137 137 137 4380

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	High Performance Thermoelectricity in Earthâ€Abundant Compounds Based on Natural Mineral Tetrahedrites. Advanced Energy Materials, 2013, 3, 342-348.	19.5	455
2	Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy and Environmental Science, 2016, 9, 454-460.	30.8	396
3	High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures. Journal of the American Chemical Society, 2013, 135, 7364-7370.	13.7	344
4	High Performance Na-doped PbTe–PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures. Journal of the American Chemical Society, 2011, 133, 16588-16597.	13.7	322
5	Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H ₂ O ₂ evolution. Energy and Environmental Science, 2022, 15, 830-842.	30.8	308
6	Origin of low thermal conductivity in SnSe. Physical Review B, 2016, 94, .	3.2	287
7	Routes for high-performance thermoelectric materials. Materials Today, 2018, 21, 974-988.	14.2	265
8	Thermoelectrics with Earth Abundant Elements: High Performance p-type PbS Nanostructured with SrS and CaS. Journal of the American Chemical Society, 2012, 134, 7902-7912.	13.7	233
9	Optimized Thermoelectric Properties of Sb-Doped Mg _{2(1+<i>>z</i>)} Si _{0.5â€"<i>y</i>} Sn _{0.5} Sb _{<i>y</i>} through Adjustment of the Mg Content. Chemistry of Materials, 2011, 23, 5256-5263.	6.7	148
10	Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1â^'ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. Journal of Materials Chemistry, 2012, 22, 13653.	6.7	134
11	Co and Pt Dualâ€Singleâ€Atoms with Oxygenâ€Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials, 2021, 33, e2003327.	21.0	123
12	Facile <i>in situ</i> solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2020, 8, 1394-1402.	10.3	117
13	Structure and Transport Properties of Double-Doped CoSb _{2.75} Ge _{0.25â€"<i>x</i>} Te _{<i>x</i>} (<i>x</i> = 0.125â€"0.20) with in Situ Nanostructure. Chemistry of Materials, 2011, 23, 2948-2955.	6.7	111
14	Ultrahigh Photocatalytic CO ₂ Reduction Efficiency and Selectivity Manipulation by Singleâ€Tungstenâ€Atom Oxide at the Atomic Step of TiO ₂ . Advanced Materials, 2022, 34, e2109074.	21.0	107
15	Amorphous Carbon Nitride with Three Coordinate Nitrogen (N3 _C) Vacancies for Exceptional NO <i>_x</i> Abatement in Visible Light. Advanced Energy Materials, 2021, 11, 2004001.	19.5	91
16	Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. Journal of Materials Chemistry, 2012, 22, 2958-2964.	6.7	87
17	Sodiumâ€Doped Tin Sulfide Single Crystal: A Nontoxic Earthâ€Abundant Material with High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1800087.	19.5	80
18	Ultra-high average figure of merit in synergistic band engineered Sn Na1â^'Se0.9S0.1 single crystals. Materials Today, 2018, 21, 501-507.	14.2	71

#	Article	IF	Citations
19	A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nature Communications, 2021, 12, 2023.	12.8	69
20	Microstructure and thermoelectric properties of CoSb2.75Ge0.25â^'Te prepared by rapid solidification. Acta Materialia, 2012, 60, 3536-3544.	7.9	62
21	Isotype Heterojunction-Boosted CO2 Photoreduction to CO. Nano-Micro Letters, 2022, 14, 74.	27.0	56
22	Piezoâ€Electrocatalysis for CO ₂ Reduction Driven by Vibration. Advanced Energy Materials, 2022, 12, .	19.5	55
23	PbTe–PbSnS2 thermoelectric composites: low lattice thermal conductivity from large microstructures. Energy and Environmental Science, 2012, 5, 8716.	30.8	54
24	Enhancing the Thermoelectric Performance of p-Type Mg ₃ Sb ₂ via Codoping of Li and Cd. ACS Applied Materials & Diterfaces, 2020, 12, 8359-8365.	8.0	54
25	Grain size optimization for high-performance polycrystalline SnSe thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 14053-14060.	10.3	53
26	Dopant Induced Impurity Bands and Carrier Concentration Control for Thermoelectric Enhancement in p-Type Cr ₂ Ge ₂ Te ₆ . Chemistry of Materials, 2017, 29, 7401-7407.	6.7	53
27	Twin Engineering in Solutionâ€Synthesized Nonstoichiometric Cu ₅ FeS ₄ Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. Advanced Functional Materials, 2018, 28, 1705117.	14.9	53
28	Ultrahigh Photocatalytic Rate at a Singleâ€Metalâ€Atomâ€Oxide. Advanced Materials, 2019, 31, e1903491.	21.0	53
29	High-Temperature Structural and Thermoelectric Study of Argyrodite Ag ₈ GeSe ₆ . ACS Applied Materials & Interfaces, 2019, 11, 2168-2176.	8.0	51
30	Entropy Engineered Cubic nâ€Type AgBiSe ₂ Alloy with High Thermoelectric Performance in Fully Extended Operating Temperature Range. Advanced Energy Materials, 2021, 11, 2003304.	19.5	51
31	Hierarchically structured TiO ₂ for Ba-filled skutterudite with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2014, 2, 20629-20635.	10.3	50
32	Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe. Journal of Materials Chemistry C, 2017, 5, 10191-10200.	5.5	50
33	Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22401-22407.	8.0	49
34	Constructing n-type Ag2Se/CNTs composites toward synergistically enhanced thermoelectric and mechanical performance. Acta Materialia, 2022, 223, 117502.	7.9	48
35	Melt-spun Sn1â^'â^'Sb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT. Nano Energy, 2021, 84, 105879.	16.0	46
36	Band structure engineering in highly degenerate tetrahedrites through isovalent doping. Journal of Materials Chemistry A, 2016, 4, 17096-17103.	10.3	44

3

#	Article	lF	CITATIONS
37	Ultra rapid fabrication of p-type Li-doped Mg2Si0.4Sn0.6 synthesized by unique melt spinning method. Scripta Materialia, 2016, 115, 52-56.	5.2	40
38	Synergistic Strategy to Enhance the Thermoelectric Properties of CoSbS $<$ sub $>$ 1â \in " $<$ i> \times /i> $<$ /sub $>$ Se $<$ sub $>$ $<$ i> \times /i> $<$ /sub $>$ Compounds via Solid Solution. ACS Applied Materials & Discourse (applied Solution) and Solid Solution. ACS Applied Materials & Discourse (applied Solution) are solid Solution.	8.0	38
39	Enhanced thermoelectric properties of YbZn2Sb2â^xxBix through a synergistic effect via Bi-doping. Chemical Engineering Journal, 2019, 374, 589-595.	12.7	38
40	High Thermoelectric Performance in Sulfideâ€Type Argyrodites Compound Ag ₈ Sn(S _{1â°'} <i>_x</i> Se <i>_x</i>) _{)₆ Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime. Advanced Functional Materials, 2020, 30, 2000526.}	14.9	38
41	Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering. Journal of Materials Science and Technology, 2021, 78, 121-130.	10.7	38
42	Crystal Structure, Charge Transport, and Magnetic Properties of MnSb ₂ Se ₄ . European Journal of Inorganic Chemistry, 2011, 2011, 3969-3977.	2.0	37
43	Fast and highly sensitive humidity sensors based on NaNbO ₃ nanofibers. RSC Advances, 2015, 5, 20453-20458.	3.6	37
44	Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3. NPG Asia Materials, 2017, 9, e387-e387.	7.9	37
45	Topological Dirac line nodes and superconductivity coexist in SnSe at high pressure. Physical Review B, 2017, 96, .	3.2	35
46	High thermoelectric performance balanced by electrical and thermal transport in tetrahedrites Cu12+Sb4S12Se. Energy Storage Materials, 2018, 13, 127-133.	18.0	35
47	General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties. Chemical Engineering Journal, 2020, 393, 124763.	12.7	33
48	High Thermoelectric Performance of Co-Doped P-Type Polycrystalline SnSe via Optimizing Electrical Transport Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8446-8455.	8.0	31
49	Donor and acceptor impurity-driven switching of magnetic ordering in MnSb _{2a^'x} Sn _x Se ₄ . Journal of Materials Chemistry C, 2014, 2, 6199-6210.	5. 5	30
50	Synergistic Effect of Bismuth and Indium Codoping for High Thermoelectric Performance of Melt Spinning SnTe Alloys. ACS Applied Materials & Spinning SnTe Alloys. ACS Applied Materials & Spinning SnTe Alloys. ACS Applied Materials & Spinning SnTe Alloys.	8.0	30
51	Large-scale colloidal synthesis of Cu ₅ FeS ₄ compounds and their application in thermoelectrics. Journal of Materials Chemistry C, 2017, 5, 301-308.	5.5	29
52	High-performance magnesium-based thermoelectric materials: Progress and challenges. Journal of Magnesium and Alloys, 2022, 10, 1719-1736.	11.9	29
53	High thermoelectric performance in complex phosphides enabled by stereochemically active lone pair electrons. Journal of Materials Chemistry A, 2018, 6, 24877-24884.	10.3	28
54	Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu ₃ SbSe ₄ â€Based Composites. Advanced Materials, 2022, 34, e2109952.	21.0	28

#	Article	IF	CITATIONS
55	Melt spinning synthesis of p-type skutterudites: Drastically speed up the process of high performance thermoelectrics. Scripta Materialia, 2016, 116, 26-30.	5.2	27
56	Effect of the Cu vacancy on the thermoelectric performance of p-type Cu1â^'xInTe2 compounds. Ceramics International, 2017, 43, 16276-16282.	4.8	27
57	Achieving Enhanced Thermoelectric Performance in (SnTe) _{1<i>x</i>}	8.0	26
58	Promoted high temperature carrier mobility and thermoelectric performance of InTe enabled by altering scattering mechanism. Journal of Materials Chemistry A, 2019, 7, 11690-11698.	10.3	25
59	Exceptional Performance Driven by Planar Honeycomb Structure in a New High Temperature Thermoelectric Material BaAgAs. Advanced Functional Materials, 2021, 31, 2100583.	14.9	25
60	Low temperature thermoelectric properties of $\langle i \rangle p \langle i \rangle$ -type doped single-crystalline SnSe. Applied Physics Letters, 2018, 112, .	3.3	24
61	Colloidal synthesis of Cu _{2â^'x} Ag _x CdSnSe ₄ nanocrystals: microstructures facilitate high performance thermoelectricity. Journal of Materials Chemistry C, 2015, 3, 12273-12280.	5. 5	23
62	Magneto-Seebeck effect and ambipolar Nernst effect in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CsV</mml:mi><mm .<="" 104,="" 2021,="" b,="" physical="" review="" superconductor.="" td=""><td>l:mß:⁄23<td>ıml23ın></td></td></mm></mml:msub></mml:mrow></mml:math>	l:m ß :⁄23 <td>ıml23ın></td>	ım l23 ın>
63	The role of electronegativity in the thermoelectric performance of GeTe–l–V–Vl ₂ solid solutions. Journal of Materials Chemistry A, 2021, 9, 2385-2393.	10.3	22
64	Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. Journal of Applied Physics, 2011, 109, .	2. 5	21
65	Contributed Review: Instruments for measuring Seebeck coefficient of thin film thermoelectric materials: A mini-review. Review of Scientific Instruments, 2018, 89, 101501.	1.3	21
66	Structure Change and Rattling Dynamics in Cu ₁₂ Sb ₄ S ₁₃ Tetrahedrite: an NMR Study. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36010-36017.	8.0	19
67	Realizing Cd and Ag codoping in p-type Mg3Sb2 toward high thermoelectric performance. Journal of Magnesium and Alloys, 2023, 11, 2486-2494.	11.9	19
68	Anomalous Thermoelectric Performance in Asymmetric Dirac Semimetal BaAgBi. Journal of Physical Chemistry Letters, 2022, 13, 2291-2298.	4.6	19
69	Thermoelectric Performance of Sb- and La-Doped Mg2Si0.5Ge0.5. Journal of Electronic Materials, 2012, 41, 1589-1594.	2.2	18
70	Substitution defect enhancing thermoelectric properties in CulnTe2. Materials Research Bulletin, 2018, 101, 184-189.	5 . 2	18
71	Nitrous oxide emission mitigation during low–carbon source wastewater treatment: effect of external carbon source supply strategy. Environmental Science and Pollution Research, 2019, 26, 23095-23107.	5. 3	18
72	Structure-Dependent Thermoelectric Properties of GeSe _{1â€"<i>x</i>} Te _{<i>x</i>} (0 ≠ <i>x</i> ≠0.5). ACS Applied Materials & Interfaces, 2020, 12, 41381-41389.	8.0	18

#	Article	IF	Citations
73	Synergistically promoted thermoelectric performance of SnTe by alloying with NaBiTe2. Applied Physics Letters, 2020, 116, 173902.	3.3	18
74	Intriguing substitution of conducting layer triggered enhancement of thermoelectric performance in misfit-layered (SnS)1.2(TiS2)2. Applied Physics Letters, 2017, 110 , .	3.3	17
75	Phase Composition Manipulation and Twin Boundary Engineering Lead to Enhanced Thermoelectric Performance of Cu ₂ SnS ₃ . ACS Applied Energy Materials, 2021, 4, 9240-9247.	5.1	17
76	Origin of <scp>Bismuthâ€Rich</scp> Strategy in Bismuth Oxyhalide Photocatalysts. Energy and Environmental Materials, 2023, 6, .	12.8	17
77	A Second Amorphous Layer Underneath Surface Oxide. Microscopy and Microanalysis, 2017, 23, 173-178.	0.4	16
78	Rapid preparation of Ge0.9Sb0.1Te1+ via unique melt spinning: Hierarchical microstructure and improved thermoelectric performance. Journal of Alloys and Compounds, 2019, 774, 129-136.	5.5	16
79	zT = 1.1 in CulnTe2 Solid Solutions Enabled by Rational Defect Engineering. ACS Applied Energy Materials, 2020, 3, 2039-2048.	5.1	16
80	An efficient Niâ€"P amorphous alloy electrocatalyst with a hierarchical structure toward borohydride oxidation. Dalton Transactions, 2021, 50, 10168-10179.	3.3	15
81	Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu ₅ FeS _{4â^²} <i>_x</i> Se <i>_x</i> Boundaries. Small, 2022, 18, e2104592.	10.0	15
82	A Tunable Structural Family with Ultralow Thermal Conductivity: Copper-Deficient Cu _{1â€"<i>x</i>} 8i _{1+<i>x</i>} 8 _{1+<i>x</i>} 8 ₉ 999 <td>ub</td> <td>)>.15</td>	ub)>.15
83	Ultralow Lattice Thermal Conductivity of Cubic CuFeS ₂ Induced by Atomic Disorder. Chemistry of Materials, 2021, 33, 9795-9802.	6.7	15
84	Large-Scale Colloidal Synthesis of Co-doped Cu2SnSe3 Nanocrystals for Thermoelectric Applications. Journal of Electronic Materials, 2016, 45, 1935-1941.	2.2	14
85	Super-rapid Preparation of Nanostructured Nd x Fe3CoSb12 Compounds and Their Improved Thermoelectric Performance. Journal of Electronic Materials, 2016, 45, 1271-1277.	2.2	14
86	Porous Ni–Cu Alloy Dendrite Anode Catalysts with High Activity and Selectivity for Direct Borohydride Fuel Cells. ACS Applied Materials & Diterfaces, 2022, 14, 3910-3918.	8.0	14
87	The chemistry and structural thermal stability of hole-doped single crystalline SnSe. Journal of Alloys and Compounds, 2016, 688, 1088-1094.	5.5	12
88	Achieving higher thermoelectric performance for p-type $Cr2Ge2Te6$ via optimizing doping. Applied Physics Letters, $2018,113,.$	3.3	12
89	Realizing both n- and p-types of high thermoelectric performance in Fe1â^'xNixTiSb half-Heusler compounds. Journal of Materials Chemistry C, 2020, 8, 3156-3164.	5.5	11
90	Highly (100)-orientated SnSe thin films deposited by pulsed-laser deposition. Applied Surface Science, 2021, 535, 147694.	6.1	11

#	Article	IF	CITATIONS
91	In-situ micro-Raman study of SnSe single crystals under atmosphere: Effect of laser power and temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120375.	3.9	11
92	Enhanced thermoelectric performance in Cu2GeSe3 via (Ag,Ga)-co-doping on cation sites. Journal of Alloys and Compounds, 2018, 769, 218-225.	5.5	10
93	Synergistic effect of CulnSe ₂ alloying on enhancing the thermoelectric performance of Cu ₂ SnSe ₃ compounds. Journal of Materials Chemistry A, 2020, 8, 21181-21188.	10.3	10
94	Boosting the thermoelectric performance of p-type polycrystalline SnSe with high doping efficiency <i>via</i> precipitation design. Journal of Materials Chemistry A, 2021, 9, 2991-2998.	10.3	10
95	Solution-Synthesized SnSe _{1â€"<i>x</i>} S _{<i>x</i>} : Dual-Functional Materials with Enhanced Electrochemical Storage and Thermoelectric Performance. ACS Applied Materials & Amp; Interfaces, 2021, 13, 37201-37211.	8.0	10
96	Multiple Effects Promoting the Thermoelectric Performance of SnTe by Alloying with CuSbTe ₂ and CuBiTe ₂ . ACS Applied Materials & Interfaces, 2021, 13, 52775-52782.	8.0	10
97	Effects of Lanthanum Substitution on Thermoelectric Properties of YbZn2Sb2. Journal of Electronic Materials, 2017, 46, 2611-2615.	2.2	9
98	Dynamic Epitaxial Crystallization of SnSe ₂ on the Oxidized SnSe Surface and Its Atomistic Mechanisms. ACS Applied Materials & Samp; Interfaces, 2020, 12, .	8.0	9
99	Strong coupling between magnetic order and band topology in the antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>EuMnSb</mml:mi><mml:mn>2<td>ทกซ:ฮาท> <</td><td>/m9nl:msub></td></mml:mn></mml:msub></mml:math>	ท กซ: ฮาท> <	/m 9 nl:msub>
100	Exceptional Thermoelectric Performance Enabled by High Carrier Mobility and Intrinsically Low Lattice Thermal Conductivity in Phosphide Cd ₃ P ₂ . Chemistry of Materials, 2022, 34, 1620-1626.	6.7	9
101	Two impurity energy level regulation leads to enhanced thermoelectric performance of Ag _{1â^x} Cd _x In ₅ Se ₈ . RSC Advances, 2017, 7, 12719-12725.	3.6	8
102	Manipulating the phase transformation temperature to achieve cubic Cu ₅ FeS _{4â^'x} Se _x and enhanced thermoelectric performance. Journal of Materials Chemistry C, 2020, 8, 17222-17228.	5.5	8
103	A dual mode electronic synapse based on layered SnSe films fabricated by pulsed laser deposition. Nanoscale Advances, 2020, 2, 1152-1160.	4.6	8
104	Thermoelectricity of n-type MnBi4S7-7xSe7x solid solution. Chemical Engineering Journal, 2020, 396, 125219.	12.7	8
105	Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized Cu2–xS. ACS Applied Materials & Distriction (2015)	8.0	8
106	Colloidal synthesis of diamond-like compound Cu2SnTe3 and thermoelectric properties of (Cu0.96InTe2)1â°'(Cu2SnTe3) solid solutions. Chemical Engineering Journal, 2021, 422, 129985.	12.7	8
107	The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide. Journal of Materials Chemistry C, 2020, 8, 9345-9351.	5.5	8
108	Photoinduced Ultrafast Symmetry Switch in SnSe. Journal of Physical Chemistry Letters, 2022, 13, 442-448.	4.6	8

#	Article	IF	CITATIONS
109	Charge Disproportionation Triggers Bipolar Doping in FeSb _{2â€"<i>x</i>} Sn _{<i>x</i>} Se ₄ Ferromagnetic Semiconductors, Enabling a Temperature-Induced Lifshitz Transition. Journal of the American Chemical Society, 2019, 141, 9249-9261.	13.7	7
110	Thermoelectric performance of binary lithium-based compounds: Li3Sb and Li3Bi. Applied Physics Letters, 2021, 119, .	3.3	7
111	Phase Modulation Enabled High Thermoelectric Performance in Polycrystalline GeSe _{0.75} Te _{0.25} . Advanced Functional Materials, 2022, 32, .	14.9	7
112	High-Temperature Thermoelectric Properties of Ge-Substituted p-Type Nd-Filled Skutterudites. Journal of Electronic Materials, 2017, 46, 2958-2963.	2.2	6
113	Thermoelectric study of Zn-doped n-type AgIn5Se8: Hopping and band electrical conduction along with low lattice thermal conduction in diamond-like structure. Journal of Alloys and Compounds, 2019, 805, 444-453.	5.5	6
114	Synergistic modulation of the thermoelectric performance of melt-spun p-type Mg ₂ Sn <i>via</i> Na ₂ S and Si alloying. Journal of Materials Chemistry A, 2022, 10, 5452-5459.	10.3	6
115	Single-atom sites on perovskite chips for record-high sensitivity and quantification in SERS. Science China Materials, 2022, 65, 1601-1614.	6.3	6
116	Synergistically optimized thermoelectric properties of Ag _{1+x} ln ₅ Se ₈ alloys. Inorganic Chemistry Frontiers, 2019, 6, 3545-3553.	6.0	5
117	Ultra-small subnano TiO _x clusters as excellent cocatalysts for the photocatalytic degradation of tetracycline on plasmonic Ag/AgCl. Catalysis Science and Technology, 2020, 10, 147-153.	4.1	5
118	Enhanced Thermoelectric Performance in SmMg ₂ Bi ₂ via Ca-Alloying and Ge-Doping. ACS Applied Energy Materials, 2022, 5, 5182-5190.	5.1	5
119	Attaining enhanced thermoelectric performance in p-type (SnSe)1–(SnS2) produced via sintering their solution-synthesized micro/nanostructures. Journal of Materials Science and Technology, 2022, 120, 205-213.	10.7	5
120	Effect of Al substitution on Thermoelectric Performance of CulnTe2 compounds. Materials Research Society Symposia Proceedings, 2015, 1735, 136.	0.1	4
121	Identification of vibrational mode symmetry and phonon anharmonicity in SbCrSe3 single crystal using Raman spectroscopy. Science China Materials, 2021, 64, 2824-2834.	6.3	4
122	Rapid Fabrication of CulnSb<1> _× Te _{2–<1>×} (0 ≠<1>× ≠0.10) Compounds and Their Thermoelectric Performance. Science of Advanced Materials, 2015, 7, 2672-2678.	0.7	4
123	Revealing the intrinsic p-to-n transition mechanism on Mg ₃ Sb ₂ through extra Mg. Applied Physics Letters, 2022, 120, 173902.	3.3	4
124	Effect of Sn Doping in (Bi0.25Sb0.75)2â^'x Sn x Te3 (0Ââ‰ÂxÂâ‰Â0.1) on Thermoelectric Performance. Journal of Electronic Materials, 2016, 45, 1441-1446.	of 2.2	3
125	Copper-Ion Dynamics and Phase Segregation in Cu-Rich Tetrahedrite: an NMR Study. Journal of Physical Chemistry C, 2020, 124, 3973-3979.	3.1	3
126	Lattice Thermal Transport in the Homogeneous Cageâ€Like Compounds Cu ₃ VSe ₄ and Cu ₃ NbSe ₄ : Interplay between Phononâ€Phase Space, Anharmonicity, and Atomic Mass. ChemPhysChem, 2021, 22, 2579-2584.	2.1	3

#	Article	IF	CITATIONS
127	Investigation of the valence band structure of PbSe by optical and transport measurement. Materials Research Society Symposia Proceedings, 2013, 1490, 75-81.	0.1	2
128	Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis. International Journal of Modern Physics B, 2015, 29, 1542050.	2.0	2
129	Thermoelectric Properties of Ce/Pb Co-doped Polycrystalline In4â^'x Ce x Pb0.01Se3 Compounds. Journal of Electronic Materials, 2017, 46, 3215-3220.	2.2	2
130	Thermoelectric CoGeTe with an Orthorhombic Crystal Symmetry and Balance of the Electrical and Thermal Properties. Inorganic Chemistry, 2021, 60, 12331-12338.	4.0	1
131	Rattling and Band-Filling Effects in Substituted Tetrahedrites: An NMR Study. Journal of Physical Chemistry C, 2021, 125, 18877-18886.	3.1	1
132	Realizing ultrahigh average figure of merit through manipulating layered phonon-electron decoupling. Science China Materials, 0, , .	6.3	1
133	Strong anharmonicity induced low lattice thermal conductivity and high thermoelectric performance in (CuInTe ₂) _{1â^'} _{<i>x</i>} (AgSbTe ₂) _{<i>x</i>} system. Applied Physics Letters. 2022. 121. 013903.	3.3	1
134	Se Vacancy Effect on the Thermoelectric Performance of Pb-Doped In4Pb0.01Se3â^'x Polycrystalline. Journal of Electronic Materials, 2017, 46, 3131-3136.	2.2	0