
Andrew J Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skeletal muscle alterations in patients with acute Covidâ€19 and postâ€acute sequelae of Covidâ€19. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 11-22.	2.9	119
2	Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life, 2022, 12, 437.	1.1	8
3	Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients, 2022, 14, 2304.	1.7	9
4	Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules, 2022, 12, 768.	1.8	1
5	Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. International Journal of Molecular Sciences, 2022, 23, 6786.	1.8	15
6	Placental sex-dependent spermine synthesis regulates trophoblast gene expression through acetyl-coA metabolism and histone acetylation. Communications Biology, 2022, 5, .	2.0	4
7	Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nature Communications, 2021, 12, 1905.	5.8	82
8	Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a regionâ€specific manner. FASEB Journal, 2021, 35, e21591.	0.2	8
9	Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness. Redox Biology, 2021, 41, 101907.	3.9	16
10	β-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery. ELife, 2021, 10, .	2.8	12
11	Glucocorticoid maturation of mitochondrial respiratory capacity in skeletal muscle before birth. Journal of Endocrinology, 2021, 251, 53-68.	1.2	8
12	The association of circulating amylin with βâ€amyloid in familial Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12130.	1.8	21
13	Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Frontiers in Medicine, 2021, 8, 753268.	1.2	11
14	Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biology, 2021, 19, 265.	1.7	4
15	Editorial: Translational Approaches for Targeting Cardiovascular Complications of Diabetes. Frontiers in Pharmacology, 2021, 12, 799020.	1.6	0
16	Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney International, 2020, 97, 143-155.	2.6	31
17	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	1.8	56
18	Reconsidering critical illness as an uncharacterised acquired mitochondrial disorder. Journal of the Intensive Care Society, 2020, 21, 102-104.	1.1	5

#	Article	IF	CITATIONS
19	Metabolic adaptation to high altitude. Current Opinion in Endocrine and Metabolic Research, 2020, 11, 33-41.	0.6	20
20	Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. Journal of Proteome Research, 2020, 19, 3919-3935.	1.8	12
21	Rat pancreatectomy combined with isoprenaline or uninephrectomy as models of diabetic cardiomyopathy or nephropathy. Scientific Reports, 2020, 10, 16130.	1.6	3
22	Human adaptation to hypoxia in critical illness. Journal of Applied Physiology, 2020, 129, 656-663.	1.2	15
23	Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Science Advances, 2020, 6, eabb1929.	4.7	41
24	Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue Through the XOR-Catalyzed Nitric Oxide Pathway. Diabetes, 2020, 69, 893-901.	0.3	8
25	Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Molecular Genetics and Metabolism Reports, 2020, 23, 100580.	0.4	9
26	Effects of Germline VHL Deficiency on Growth, Metabolism, and Mitochondria. New England Journal of Medicine, 2020, 382, 835-844.	13.9	23
27	Thyroid Deficiency Before Birth Alters the Adipose Transcriptome to Promote Overgrowth of White Adipose Tissue and Impair Thermogenic Capacity. Thyroid, 2020, 30, 794-805.	2.4	10
28	Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. Journal of Physiology, 2020, 598, 2453-2468.	1.3	25
29	PPARα-independent effects of nitrate supplementation on skeletal muscle metabolism in hypoxia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 844-853.	1.8	13
30	Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Frontiers in Physiology, 2019, 10, 639.	1.3	27
31	Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration—probing the role of PPARα. FASEB Journal, 2019, 33, 7563-7577.	0.2	18
32	Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Scientific Reports, 2019, 9, 2297.	1.6	31
33	A model for determining cardiac mitochondrial substrate utilisation using stable 13C-labelled metabolites. Metabolomics, 2019, 15, 154.	1.4	7
34	Placental mitochondria adapt developmentally and in response to hypoxia to support fetal growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1621-1626.	3.3	75
35	Noncanonical mitochondrial unfolded protein response impairs placental oxidative phosphorylation in early-onset preeclampsia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18109-18118.	3.3	67
36	Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochemical Society Transactions, 2018, 46, 599-607.	1.6	61

#	Article	IF	CITATIONS
37	Rapid kinetics of changes in oxygen consumption rate in thrombin-stimulated platelets measured by high-resolution respirometry. Biochemical and Biophysical Research Communications, 2018, 503, 2721-2727.	1.0	14
38	The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness. Physiological Reports, 2018, 6, e13854.	0.7	4
39	Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biology, 2018, 19, 79.	3.8	83
40	Novel "Dual Hit" Rat Model of Diabetic Cardiomyopathy. Diabetes, 2018, 67, .	0.3	1
41	Mitochondrial – Endoplasmic reticulum interactions in the trophoblast: Stress and senescence. Placenta, 2017, 52, 146-155.	0.7	111
42	Oxygen and placental development; parallels and differences with tumour biology. Placenta, 2017, 56, 14-18.	0.7	55
43	Commentaries on Viewpoint: Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose?. Journal of Applied Physiology, 2017, 122, 409-411.	1.2	5
44	Metabolic basis to Sherpa altitude adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6382-6387.	3.3	162
45	Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and Î ³ -Aminobutyric Acid Release. Diabetes, 2017, 66, 674-688.	0.3	35
46	Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology, 2017, 65, 1165-1180.	3.6	138
47	Mitochondrial function at extreme high altitude. Journal of Physiology, 2016, 594, 1137-1149.	1.3	61
48	Response to Comment on Lee et al. Diabetes 2015;64:2836–2846. Comment on Roberts et al. Diabetes 2015;64:471–484. Diabetes, 2016, 65, e16-e16.	0.3	0
49	Energy metabolism and the highâ€altitude environment. Experimental Physiology, 2016, 101, 23-27.	0.9	72
50	On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB Journal, 2016, 30, 2684-2697.	0.2	54
51	Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metabolism, 2016, 24, 256-268.	7.2	377
52	Novel ketone diet enhances physical and cognitive performance. FASEB Journal, 2016, 30, 4021-4032.	0.2	132
53	Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism. BMC Biology, 2015, 13, 110.	1.7	37
54	An In Situ Study on the Effects of Extracts of T araxacum Officinale, †P aulliniia Pinnata and †T honningia Sanguinea on Mitochondrial Function. Journal of Food Biochemistry, 2015, 39, 682-688.	1.2	1

#	Article	IF	CITATIONS
55	Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia. PLoS ONE, 2015, 10, e0138564.	1.1	15
56	Comprehensive Metabolic Profiling of Age-Related Mitochondrial Dysfunction in the High-Fat-Fed <i>ob</i> / <i>ob</i> Mouse Heart. Journal of Proteome Research, 2015, 14, 2849-2862.	1.8	35
57	Mitochondrial responses to extreme environments: insights from metabolomics. Extreme Physiology and Medicine, 2015, 4, 7.	2.5	14
58	Suppression of erythropoiesis by dietary nitrate. FASEB Journal, 2015, 29, 1102-1112.	0.2	16
59	Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest. Proteomics, 2015, 15, 160-171.	1.3	38
60	Inorganic Nitrate Promotes the Browning of White Adipose Tissue Through the Nitrate-Nitrite-Nitric Oxide Pathway. Diabetes, 2015, 64, 471-484.	0.3	121
61	Design and conduct of Xtreme Everest 2: An observational cohort study of Sherpa and lowlander responses to graduated hypobaric hypoxia. F1000Research, 2015, 4, 90.	0.8	16
62	Oral Coenzyme Q10 Supplementation Does Not Prevent Cardiac Alterations During a High Altitude Trek to Everest Base Camp. High Altitude Medicine and Biology, 2014, 15, 459-467.	0.5	6
63	Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extreme Physiology and Medicine, 2014, 3, 19.	2.5	78
64	How wasting is saving: Weight loss at altitude might result from an evolutionary adaptation. BioEssays, 2014, 36, 721-729.	1.2	29
65	Mitochondria at the extremes: pioneers, protectorates, protagonists. Extreme Physiology and Medicine, 2014, 3, 10.	2.5	2
66	Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart. Journal of Physiology, 2014, 592, 4715-4731.	1.3	47
67	Influence of speed of sample processing on placental energetics and signalling pathways: Implications for tissue collection. Placenta, 2014, 35, 103-108.	0.7	17
68	The Effect of Bacterial Signal Indole on the Electrical Properties of Lipid Membranes. ChemPhysChem, 2013, 14, 417-423.	1.0	34
69	Cerebral venous system and anatomical predisposition to highâ€altitude headache. Annals of Neurology, 2013, 73, 381-389.	2.8	76
70	Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R534-R541.	0.9	29
71	Of mice and men (and muscle mitochondria). Experimental Physiology, 2013, 98, 879-880.	0.9	3
72	No evidence for a local renin-angiotensin system in liver mitochondria. Scientific Reports, 2013, 3, 2467.	1.6	12

#	Article	IF	CITATIONS
73	Suppression of Mitochondrial Electron Transport Chain Function in the Hypoxic Human Placenta: A Role for miRNA-210 and Protein Synthesis Inhibition. PLoS ONE, 2013, 8, e55194.	1.1	112
74	Acclimatization of skeletal muscle mitochondria to highâ€altitude hypoxia during an ascent of Everest. FASEB Journal, 2012, 26, 1431-1441.	0.2	138
75	Metabolic differentiation in the embryonic retina. Nature Cell Biology, 2012, 14, 859-864.	4.6	153
76	Imprinted Gene Dosage Is Critical for the Transition to Independent Life. Cell Metabolism, 2012, 15, 209-221.	7.2	72
77	Oxygen delivery and fetal-placental growth: Beyond a question of supply and demand?. Placenta, 2012, 33, e16-e22.	0.7	95
78	Cryopreservation of placental biopsies for mitochondrial respiratory analysis. Placenta, 2012, 33, 122-123.	0.7	13
79	Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regulatory Toxicology and Pharmacology, 2012, 63, 196-208.	1.3	76
80	The contrasting roles of PPARδ and PPARÎ ³ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biology, 2011, 12, R75.	13.9	85
81	Taking a HIT for the heart: why training intensity matters. Journal of Applied Physiology, 2011, 111, 1229-1230.	1.2	5
82	A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Research in Cardiology, 2011, 106, 447-457.	2.5	154
83	Dietary long-chain, but not medium-chain, triglycerides impair exercise performance and uncouple cardiac mitochondria in rats. Nutrition and Metabolism, 2011, 8, 55.	1.3	14
84	Endurance exercise training blunts the deleterious effect of high-fat feeding on whole body efficiency. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R320-R326.	0.9	5
85	Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp. FASEB Journal, 2011, 25, 792-796.	0.2	85
86	A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. American Journal of Clinical Nutrition, 2011, 93, 748-755.	2.2	139
87	Shortâ€ŧerm consumption of a highâ€fat diet impairs wholeâ€body efficiency and cognitive function in sedentary men. FASEB Journal, 2011, 25, 1088-1096.	0.2	103
88	004 Peroxisome proliferator-activated receptor alpha is essential for cardiac adaptation to chronic hypoxia. Heart, 2010, 96, e1-e2.	1.2	0
89	A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat. Journal of Biological Chemistry, 2010, 285, 25950-25956.	1.6	78
90	Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R166-R172.	0.9	88

#	Article	IF	CITATIONS
91	The Effect of High-Altitude on Human Skeletal Muscle Energetics: 31P-MRS Results from the Caudwell Xtreme Everest Expedition. PLoS ONE, 2010, 5, e10681.	1.1	50
92	Deterioration of physical performance and cognitive function in rats with shortâ€ŧerm highâ€fat feeding. FASEB Journal, 2009, 23, 4353-4360.	0.2	116
93	Mt Everest trek causes impaired cardiac high energy phosphate metabolism and diastolic impairment. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	1.6	0
94	Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Medicine, 2009, 1, 117.	3.6	98
95	Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. Journal of Molecular and Cellular Cardiology, 2008, 44, 694-700.	0.9	112
96	High-fat diet alters physical and mental performance via changes in mitochondrial UCPS. Journal of Molecular and Cellular Cardiology, 2008, 44, 818.	0.9	0
97	Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Archives of Physiology and Biochemistry, 2007, 113, 211-220.	1.0	48
98	Mitochondria and heart failure. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 704-711.	1.3	63
99	Insulin resistance, abnormal energy metabolism and increased ischemic damage in the chronically infarcted rat heart. Cardiovascular Research, 2006, 71, 149-157.	1.8	49
100	Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovascular Research, 2006, 72, 430-437.	1.8	116
101	Plasma Free Fatty Acids and Peroxisome Proliferator-Activated Receptor in the Control of Myocardial Uncoupling Protein Levels. Diabetes, 2005, 54, 3496-3502.	0.3	127
102	Uncoupling proteins in human heart. Lancet, The, 2004, 364, 1786-1788.	6.3	257
103	A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1 H NMR spectroscopy. FEBS Letters, 2003, 553, 73-78.	1.3	50
104	Developmental programming of mitochondrial substrate metabolism in skeletal muscle of adult sheep by cortisol exposure before birth. Journal of Developmental Origins of Health and Disease, 0, , 1-11.	0.7	0