
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An international multicenter matched cohort analysis of incidental meningioma progression during active surveillance or after stereotactic radiosurgery: the IMPASSE study. Neuro-Oncology, 2022, 24, 116-124.	0.6	37
2	Adverse radiation effects in volume-staged radiosurgery for large arteriovenous malformations: a multiinstitutional study. Journal of Neurosurgery, 2022, 136, 503-511.	0.9	3
3	Clinical and radiologic outcomes after stereotactic radiosurgery for meningiomas in direct contact with the optic apparatus: an international multicenter study. Journal of Neurosurgery, 2022, 136, 1070-1076.	0.9	5
4	Dose to neuroanatomical structures surrounding pituitary adenomas and the effect of stereotactic radiosurgery on neuroendocrine function: an international multicenter study. Journal of Neurosurgery, 2022, 136, 813-821.	0.9	9
5	Radiological and clinical outcomes of stereotactic radiosurgery for gangliogliomas: an international multicenter study. Journal of Neurosurgery, 2022, 137, 1248-1253.	0.9	0
6	Stereotactic Radiosurgery With Versus Without Embolization for Brain Arteriovenous Malformations. Neurosurgery, 2021, 88, 313-321.	0.6	21
7	Effect of Anatomic Segment Involvement on Stereotactic Radiosurgery for Facial Nerve Schwannomas: An International Multicenter Cohort Study. Neurosurgery, 2021, 88, E91-E98.	0.6	7
8	Convexity Meningiomas in Patients with Neurofibromatosis Type 2: Long-Term Outcomes After Gamma Knife Radiosurgery. World Neurosurgery, 2021, 146, e678-e684.	0.7	1
9	Radiosurgery: Fair Treatment Option for Inoperable Brain Vascular Lesions. Stereotactic and Functional Neurosurgery, 2021, 99, 456-457.	0.8	0
10	Gamma Knife Radiosurgery of Distal Aneurysm: A Case Series. Stereotactic and Functional Neurosurgery, 2021, 99, 381-386.	0.8	1
11	Stereotactic Radiosurgery for Perioptic Meningiomas: An International, Multicenter Study. Neurosurgery, 2021, 88, 828-837.	0.6	11
12	Early versus late Gamma Knife radiosurgery for Cushing's disease after prior resection: results of an international, multicenter study. Journal of Neurosurgery, 2021, 134, 807-815.	0.9	9
13	Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Science Translational Medicine, 2021, 13, .	5.8	28
14	Stereotactic Radiosurgery for Differentiated Thyroid Cancer Brain Metastases: An International, Multicenter Study. Thyroid, 2021, 31, 1244-1252.	2.4	11
15	Treatment of WHO Grade 2 Meningiomas With Stereotactic Radiosurgery: Identification of an Optimal Group for SRS Using RPA. International Journal of Radiation Oncology Biology Physics, 2021, 110, 804-814.	0.4	21
16	Stereotactic radiosurgery for clinoid meningiomas: a multi-institutional study. Acta Neurochirurgica, 2021, 163, 2861-2869.	0.9	1
17	Stereotactic Radiosurgery for Olfactory Groove Meningiomas: An International, Multicenter Study. Neurosurgery, 2021, 89, 784-791.	0.6	4
18	Stereotactic radiosurgery with versus without prior Onyx embolization for brain arteriovenous malformations. Journal of Neurosurgery, 2021, 135, 742-750.	0.9	12

#	Article	IF	CITATIONS
19	Stereotactic radiosurgery for treatment of radiation-induced meningiomas: a multiinstitutional study. Journal of Neurosurgery, 2021, 135, 862-870.	0.9	4
20	Outcomes after stereotactic radiosurgery for schwannomas of the oculomotor, trochlear, and abducens nerves. Journal of Neurosurgery, 2021, 135, 1044-1050.	0.9	6
21	Stereotactic Radiosurgery for Atypical (World Health Organization II) and Anaplastic (World Health) Tj ETQq1 Neurosurgery, 2021, 88, 980-988.	1 0.784314 0.6	rgBT /Overlo 17
22	Outcomes of stereotactic radiosurgery for pilocytic astrocytoma: an international multiinstitutional study. Journal of Neurosurgery, 2021, 134, 162-170.	0.9	11
23	Stereotactic Radiosurgery for Choroid Plexus Tumors: A Report of the International Radiosurgery Research Foundation. Neurosurgery, 2021, 88, 791-796.	0.6	4
24	Stereotactic radiosurgery for asymptomatic petroclival region meningiomas: a focused analysis from the IMPASSE study. Acta Neurochirurgica, 2021, , 1.	0.9	3
25	Role of Gamma Knife Radiosurgery in Small Cell Lung Cancer: A Multi-Institutional Retrospective Study of the International Radiosurgery Research Foundation (IRRF). Neurosurgery, 2020, 87, 664-671.	0.6	22
26	Whole Sella vs Targeted Stereotactic Radiosurgery for Acromegaly: A Multicenter Matched Cohort Study. Neurosurgery, 2020, 86, 656-664.	0.6	3
27	Dose response and architecture in volume staged radiosurgery for large arteriovenous malformations: A multi-institutional study. Radiotherapy and Oncology, 2020, 144, 180-188.	0.3	19
28	Embolization of Brain Arteriovenous Malformations With Versus Without Onyx Before Stereotactic Radiosurgery. Neurosurgery, 2020, 88, 366-374.	0.6	9
29	Combined treatment of a medulla oblongata hemangioblastoma via permanent cysto-cisternal drainage and (postponed) gamma knife radiosurgery: a case report and review of the literature. International Journal of Neuroscience, 2020, , 1-5.	0.8	1
30	Dentate nucleus as a suitable target for stereotactic thermolesion in central poststroke pain: Case report. Clinical Neurology and Neurosurgery, 2020, 195, 105850.	0.6	1
31	The benefit and risk of stereotactic radiosurgery for prolactinomas: an international multicenter cohort study. Journal of Neurosurgery, 2020, 133, 717-726.	0.9	11
32	Gamma Knife radiosurgery for the treatment of Nelson's syndrome: a multicenter, international study. Journal of Neurosurgery, 2020, 133, 336-341.	0.9	6
33	Stereotactic radiosurgery for central neurocytomas: an international multicenter retrospective cohort study. Journal of Neurosurgery, 2020, 134, 1-10.	0.9	11
34	Earlier radiosurgery leads to better pain relief and less medication usage for trigeminal neuralgia patients: an international multicenter study. Journal of Neurosurgery, 2020, 135, 237-244.	0.9	5
35	Upfront Gamma Knife radiosurgery for Cushing's disease and acromegaly: a multicenter, international study. Journal of Neurosurgery, 2019, 131, 532-538.	0.9	15
36	Stereotactic Radiosurgery for Acromegaly: An International Multicenter Retrospective Cohort Study. Neurosurgery, 2019, 84, 717-725.	0.6	54

ROMAN LISCAK

#	/	Article	IF	CITATIONS
37		Safety and efficacy of repeat radiosurgery for acromegaly: an International Multi-Institutional Study. Iournal of Neuro-Oncology, 2019, 145, 301-307.	1.4	5
38	3	Role of gamma knife radiosurgery in the treatment of prolactinomas. Pituitary, 2019, 22, 411-421.	1.6	17
39		Outcomes After Gamma Knife Stereotactic Radiosurgery in Pediatric Patients with Cushing Disease or Acromegaly: A Multi-Institutional Study. World Neurosurgery, 2019, 125, e1104-e1113.	0.7	14
4(Repeat Stereotactic Radiosurgery for Progressive or Recurrent Vestibular Schwannomas. Neurosurgery, 2019, 85, 535-542.	0.6	12
41	L I	Risk of radiation-associated intracranial malignancy after stereotactic radiosurgery: a retrospective, multicentre, cohort study. Lancet Oncology, The, 2019, 20, 159-164.	5.1	80
42	2	Stereotactic Radiosurgery for Intracranial Ependymomas: An International Multicenter Study. Neurosurgery, 2019, 84, 227-234.	0.6	13
48		Hypopituitarism after Gamma Knife radiosurgery for pituitary adenomas: a multicenter, international study. Journal of Neurosurgery, 2019, 131, 1188-1196.	0.9	31
44		Repeat stereotactic radiosurgery for Cushing's disease: outcomes of an international, multicenter study. Journal of Neuro-Oncology, 2018, 138, 519-525.	1.4	10
48	5 /	A neurosurgeon's view: Outcome after RF-ablation for mTLE. Epilepsy Research, 2018, 142, 126-130.	0.8	6
40		Stereotactic radiosurgery for jugular foramen schwannomas: an international multicenter study. Iournal of Neurosurgery, 2018, 129, 928-936.	0.9	26
47	- 7	Technique of Whole-Sellar Stereotactic Radiosurgery for Cushing Disease: Results from a Multicenter, International Cohort Study. World Neurosurgery, 2018, 116, e670-e679.	0.7	22
48	3 1	RONC-10. OUTCOMES OF STEREOTACTIC RADIOSURGERY FOR PILOCYTIC ASTROCYTOMA: AN INTERNATIONAL MULTICENTER STUDY. Neuro-Oncology, 2018, 20, i176-i176.	0.6	0
49)	307 Stereotactic Radiosurgery for Pediatric Intracranial Ependymomas. Neurosurgery, 2018, 65, 124-125.	0.6	3
50) s	Assessment of MR stereotactic imaging and image co-registration accuracy for 3 different MR scanners by 3 different methods/phantoms: phantom and patient study. Journal of Neurosurgery, 2018, 129, 125-132.	0.9	7
51	LI	Medial Gamma Knife thalamotomy for intractable pain. Journal of Neurosurgery, 2018, 129, 72-76.	0.9	23
52	2 6	GamÂma knife stereotactic radiosurgery in recurÂrent or residual glioblastoma multiforme – our experience in two neurosurgical units. Ceska A Slovenska Neurologie A Neurochirurgie, 2018, 81/114, 556-562.	0.0	0
53	3	Gamma knife radiosurgery for local recurrence of glioblastoma. Neuroendocrinology Letters, 2018, 39, 281-287.	0.2	4

#	Article	IF	CITATIONS
55	Stereotactic Radiosurgery for Cushing Disease: Results of an International, Multicenter Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4284-4291.	1.8	72
56	Histology-Stratified Tumor Control and Patient Survival After Stereotactic Radiosurgery for Pineal Region Tumors: A Report From the International Gamma Knife Research Foundation. World Neurosurgery, 2017, 107, 974-982.	0.7	29
57	Late morphological changes after radiosurgery of brain arteriovenous malformations: an MRI study. Acta Neurochirurgica, 2016, 158, 1683-1690.	0.9	12
58	Stereotactic radiosurgery for idiopathic glossopharyngeal neuralgia: an international multicenter study. Journal of Neurosurgery, 2016, 125, 147-153.	0.9	34
59	Stereotactic Radiosurgery for Brainstem Metastases: An International Cooperative Study to Define Response and Toxicity. International Journal of Radiation Oncology Biology Physics, 2016, 96, 280-288.	0.4	83
60	Leksell Gamma Knife treatment for pilocytic astrocytomas: long-term results. Journal of Neurosurgery: Pediatrics, 2016, 18, 58-64.	0.8	15
61	http://www.csnn.eu/en/czech-slovak-neurology-article/gamma-knife-treatment-of-pain-syndromes-of-the-glossoph Ceska A Slovenska Neurologie A Neurochirurgie, 2016, 79/112, 331-335.	haryngeal-a	area-58267. 1
62	Radiosurgery for Large Arteriovenous Malformations as a Single-Session or Staged Treatment. Stereotactic and Functional Neurosurgery, 2015, 93, 342-347.	0.8	15
63	Relationship between remnant hippocampus and amygdala and memory outcomes after stereotactic surgery for mesial temporal lobe epilepsy. Neuropsychiatric Disease and Treatment, 2015, 11, 2927.	1.0	14
64	MRI-guided stereotactic amygdalohippocampectomy: a single center experience. Neuropsychiatric Disease and Treatment, 2015, 11, 359.	1.0	15
65	Gamma knife radiosurgery for Cushing's disease and Nelson's syndrome. Pituitary, 2015, 18, 376-384.	1.6	33
66	Letter to the Editor: Minimally invasive technique for epilepsy surgery. Journal of Neurosurgery, 2015, 122, 1513-1514.	0.9	0
67	Morphological changes after radiosurgery for mesial temporal lobe epilepsy. Acta Neurochirurgica, 2015, 157, 1783-1792.	0.9	9
68	Ocular and Orbital Lesions. , 2015, , 743-764.		0
69	Different Surgical Approaches for Mesial Temporal Epilepsy: Resection Extent, Seizure, and Neuropsychological Outcomes. Stereotactic and Functional Neurosurgery, 2014, 92, 372-380.	0.8	36
70	Leksell Gamma Knife radiosurgery of the jugulotympanic glomus tumor: long-term results. Journal of Neurosurgery, 2014, 121, 198-202.	0.9	45
71	Long-term seizure outcome after stereotactic amygdalohippocampectomy. Acta Neurochirurgica, 2014, 156, 1529-1537.	0.9	25
72	Stereotactic Radiosurgery of Pituitary Adenomas. Neurosurgery Clinics of North America, 2013, 24, 509-519.	0.8	6

#	Article	IF	CITATIONS
73	Stereotactic radiofrequency amygdalohippocampectomy: Two years of good neuropsychological outcomes. Epilepsy Research, 2013, 106, 423-432.	0.8	26
74	Gamma Knife Radiosurgery of Brain Cavernomas. Acta Neurochirurgica Supplementum, 2013, 116, 107-111.	0.5	11
75	Radiosurgery of Brain Cavernomas – Long-Term Results. Progress in Neurological Surgery, 2012, 27, 147-156.	1.3	5
76	Long-term Tumor Control of Benign Intracranial Meningiomas After Radiosurgery in a Series of 4565 Patients. Neurosurgery, 2012, 70, 32-39.	0.6	202
77	Cognitive outcome after stereotactic amygdalohippocampectomy. Seizure: the Journal of the British Epilepsy Association, 2012, 21, 327-333.	0.9	24
78	Stereotactic radiofrequency amygdalohippocampectomy for the treatment of temporal lobe epilepsy: Do good neuropsychological and seizure outcomes correlate with hippocampal volume reduction?. Epilepsy Research, 2012, 102, 34-44.	0.8	27
79	ls it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife?. European Journal of Endocrinology, 2011, 164, 169-178.	1.9	42
80	Stereotactic radiofrequency amygdalohippocampectomy: Does reduction of entorhinal and perirhinal cortices influence good clinical seizure outcome?. Epilepsia, 2011, 52, 932-940.	2.6	23
81	Stereotactic radiofrequency amygdalohippocampectomy in the treatment of mesial temporal lobe epilepsy. Acta Neurochirurgica, 2010, 152, 1291-1298.	0.9	88
82	Microsurgical and Stereotactic Radiofrequency Amygdalohippocampectomy for the Treatment of Mesial Temporal Lobe Epilepsy: Different Volume Reduction, Similar Clinical Seizure Control. Stereotactic and Functional Neurosurgery, 2010, 88, 42-50.	0.8	14
83	Repeated treatment of vestibular schwannomas after gamma knife radiosurgery. Acta Neurochirurgica, 2009, 151, 317-324.	0.9	37
84	Use of the Leksell gamma knife in the treatment of prolactinoma patients. Clinical Endocrinology, 2009, 70, 732-741.	1.2	56
85	The use of radiosurgery for the treatment of mesial temporal lobe epilepsy and longâ€ŧerm results. Epilepsia, 2009, 50, 2061-2071.	2.6	45
86	Stereotactic radiofrequency amygdalohippocampectomy for the treatment of mesial temporal lobe epilepsy: Correlation of MRI with clinical seizure outcome. Epilepsy Research, 2009, 83, 235-242.	0.8	27
87	Comparison of Different Techniques for Stereotactic Positron Emission Tomography Imaging. Stereotactic and Functional Neurosurgery, 2008, 86, 30-36.	0.8	0
88	Ocular and Orbital Lesions. , 2008, , 593-610.		2
89	ARTERIOVENOUS MALFORMATIONS AFTER LEKSELL GAMMA KNIFE RADIOSURGERY. Neurosurgery, 2007, 60, 1005-1016.	0.6	152
90	Gamma Knife surgery for benign meningioma. Journal of Neurosurgery, 2007, 107, 325-336.	0.9	178

#	Article	IF	CITATIONS
91	Assessment of the Accuracy in Ophthalmic Radiosurgery. , 2006, 6, 71-85.		Ο
92	Prediction of intracranial edema after radiosurgery of meningiomas. Journal of Neurosurgery, 2006, 105, 120-126.	0.9	34
93	Gamma knife surgery of brain cavernous hemangiomas. Journal of Neurosurgery, 2005, 102, 207-213.	0.9	52
94	A comparison of the gamma knife model C and the Automatic Positioning System with Leksell model B. Journal of Neurosurgery, 2005, 102, 25-28.	0.9	22
95	Does new magnetic resonance imaging technology provide better geometrical accuracy during stereotactic imaging?. Journal of Neurosurgery, 2005, 102, 8-13.	0.9	21
96	Low-grade gliomas treated by fractionated gamma knife surgery. Journal of Neurosurgery, 2005, 102, 19-24.	0.9	17
97	Treatment of essential trigeminal neuralgia with gamma knife surgery. Journal of Neurosurgery, 2005, 102, 29-33.	0.9	53
98	Low-grade gliomas treated by fractionated gamma knife surgery. Journal of Neurosurgery, 2005, 102, 19-24.	0.9	6
99	A comparison of the gamma knife model C and the Automatic Positioning System with Leksell model B. Journal of Neurosurgery, 2005, 102, 25-28.	0.9	10
100	Does new magnetic resonance imaging technology provide better geometrical accuracy during stereotactic imaging?. Journal of Neurosurgery, 2005, 102, 8-13.	0.9	9
101	Gamma Knife Surgery in Mesial Temporal Lobe Epilepsy: A Prospective Multicenter Study. Epilepsia, 2004, 45, 504-515.	2.6	292
102	Metabolite and diffusion changes in the rat brain after Leksell Gamma Knife irradiation. Magnetic Resonance in Medicine, 2004, 52, 397-402.	1.9	34
103	Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression?. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 96-100.	3.3	89
104	1H MR spectroscopy of mesial temporal lobe epilepsies treated with Gamma knife. European Radiology, 2003, 13, 994-1000.	2.3	21
105	Radiation Tolerance of Functioning Pituitary Tissue in Gamma Knife Surgery for Pituitary Adenomas. Neurosurgery, 2003, 52, 309-317.	0.6	97
106	Role of Pituitary Radiosurgery for the Management of Intractable Pain and Potential Future Applications. Stereotactic and Functional Neurosurgery, 2003, 81, 75-83.	0.8	41
107	Use of gamma knife radiosurgery for intracranial tumors. Expert Review of Neurotherapeutics, 2002, 2, 481-489.	1.4	1
108	Quality control of the stereotactic radiosurgery procedure with the polymer-gel dosimetry. Radiotherapy and Oncology, 2002, 63, 223-230.	0.3	51

#	Article	IF	CITATIONS
109	Evaluation of Geometric and Dosimetric Inaccuracies of Stereotactic Irradiation in the Rat Brain. Stereotactic and Functional Neurosurgery, 2002, 79, 57-74.	0.8	9
110	Gamma knife surgery for cancer pain—pituitary gland—stalk ablation: a multicenter prospective protocol since 2002. Journal of Neurosurgery, 2002, 97, 433-437.	0.9	48
111	Functional magnetic resonance imaging during deep brain stimulation: A pilot study in four patients with Parkinson's disease. Movement Disorders, 2001, 16, 1126-1132.	2.2	153
112	Radiosurgery for Epilepsy Associated with Cavernous Malformation: Retrospective Study in 49 Patients. Neurosurgery, 2000, 47, 1091-1097.	0.6	125
113	Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. International Journal of Radiation Oncology Biology Physics, 2000, 46, 1143-1148.	0.4	365
114	Solitary brain metastases treated with the Leksell gamma knife: prognostic factors for patients. Radiotherapy and Oncology, 2000, 57, 207-213.	0.3	98
115	Treatment of postherpetic trigeminal neuralgia with the Leksell gamma knife. Journal of Neurosurgery, 2000, 93, 165-168.	0.9	25
116	A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. International Journal of Radiation Oncology Biology Physics, 1999, 44, 67-74.	0.4	242
117	Transportation Dose and Doses to Extracranial Sites during Stereotactic Radiosurgery with the Leksell Gamma Knife. Stereotactic and Functional Neurosurgery, 1996, 66, 170-183.	0.8	20
118	Fractionated stereotactic radiotherapy with the Leksell Gamma Knife: feasibility study. Radiotherapy and Oncology, 1995, 37, 108-116.	0.3	39