
Namsun Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840011/publications.pdf Version: 2024-02-01

NAMSUN CHOU

#	Article	IF	CITATIONS
1	A Multimodal Multi‧hank Fluorescence Neural Probe for Cellâ€Type‧pecific Electrophysiology in Multiple Regions across a Neural Circuit. Advanced Science, 2022, 9, e2103564.	11.2	10
2	Interfacial and surface analysis of parylene C-modified PDMS substrates for soft bioelectronics. Progress in Organic Coatings, 2021, 157, 106309.	3.9	6
3	A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. Microsystems and Nanoengineering, 2021, 7, 66.	7.0	15
4	Transformation of 2D Planes into 3D Soft and Flexible Structures with Embedded Electrical Functionality. ACS Applied Materials & amp; Interfaces, 2019, 11, 36186-36195.	8.0	9
5	A MEMS ultrasound stimulation system for modulation of neural circuits with high spatial resolution in vitro. Microsystems and Nanoengineering, 2019, 5, 28.	7.0	24
6	A 3D Microscaffold Cochlear Electrode Array for Steroid Elution. Advanced Healthcare Materials, 2019, 8, e1900379.	7.6	23
7	An Intrafascicular Neural Interface With Enhanced Interconnection for Recording of Peripheral Nerve Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1312-1319.	4.9	12
8	A Multimodal Multichannel Neural Activity Readout IC with 0.7μW/Channel Ca ²⁺ -Probe-Based Fluorescence Recording and Electrical Recording. , 2019, , .		4
9	A Batteryless, Wireless Strain Sensor Using Resonant Frequency Modulation. Sensors, 2018, 18, 3955.	3.8	11
10	Development of an intrafascicular neural interface for peripheral nerve implantation. , 2017, 2017, 847-850.		2
11	Annealing Effects of Parylene-Caulked Polydimethylsiloxane as a Substrate of Electrodes. Sensors, 2016, 16, 2181.	3.8	1
12	Wearable strain sensors fabricated by silver nanowire patterning method based on parylene stencil technique. , 2016, 2016, 6066-6069.		1
13	Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Biomedical Microdevices, 2016, 18, 42.	2.8	21
14	A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications. ACS Applied Materials & Interfaces, 2016, 8, 6269-6276.	8.0	57
15	Highly sensitive capacitive tactile sensor based on silver nanowire using parylene-C stencil patterning method. , 2015, , .		0
16	Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Applied Physics Letters, 2014, 105, 241903.	3.3	6
17	MEMS-based microelectrode technologies capable of penetrating neural tissues. Biomedical Engineering Letters, 2014, 4, 109-119.	4.1	5
18	Evaluation of sub-micrometer parylene C films as an insulation layer using electrochemical impedance spectroscopy. Progress in Organic Coatings, 2014, 77, 537-547.	3.9	31

NAMSUN CHOU

#	Article	IF	CITATIONS
19	A Largely Deformable Surface Type Neural Electrode Array Based on PDMS. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 544-553.	4.9	42
20	Fabrication of flexible electrode array based on PDMS for long-term in-vivo use. , 2013, , .		3
21	A fabrication method of out-of-plane stretchable and flexible electrodes based on PDMS. , 2013, , .		4
22	Crack-free and reliable lithographical patterning methods on PDMS substrate. Journal of Micromechanics and Microengineering, 2013, 23, 125035.	2.6	34
23	Fabrication of stretchable and flexible electrodes based on PDMS substrate. , 2012, , .		7
24	Largely deformable surface electrode based on PDMS for cortical recording and stimulation. , 2011, , .		2