Jean-Michel Gerard

List of Publications by Citations

Source: https://exaly.com/author-pdf/2839914/jean-michel-gerard-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

288 12,870 107 55 h-index g-index citations papers 360 14,032 5.9 3.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
288	Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. <i>Physical Review Letters</i> , 1994 , 73, 716-719	7.4	956
287	Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. <i>Physical Review Letters</i> , 1998 , 81, 1110-1113	7.4	835
286	Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. <i>Physical Review Letters</i> , 2005 , 95, 067401	7.4	569
285	Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. <i>Applied Physics Letters</i> , 2001 , 79, 2865-2867	3.4	414
284	A highly efficient single-photon source based on a quantum dot in a photonic nanowire. <i>Nature Photonics</i> , 2010 , 4, 174-177	33.9	414
283	Spin relaxation quenching in semiconductor quantum dots. <i>Physical Review Letters</i> , 2001 , 86, 1634-7	7.4	358
282	Strong-coupling regime for quantum boxes in pillar microcavities: Theory. <i>Physical Review B</i> , 1999 , 60, 13276-13279	3.3	325
281	Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons. <i>Physical Review Letters</i> , 1999 , 83, 4152-4155	7.4	325
280	Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. Journal of Lightwave Technology, 1999 , 17, 2089-2095	4	305
279	A highly efficient single-photon source based on a quantum dot in a photonic nanowire. <i>Nature Photonics</i> , 2010 ,	33.9	286
278	Quantum Cascade of Photons in Semiconductor Quantum Dots. <i>Physical Review Letters</i> , 2001 , 87,	7.4	256
277	Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. <i>Applied Physics Letters</i> , 1996 , 69, 449-451	3.4	225
276	Optically driven spin memory in n-doped InAs-GaAs quantum dots. <i>Physical Review Letters</i> , 2002 , 89, 207401	7.4	210
275	High-Q wet-etched GaAs microdisks containing InAs quantum boxes. <i>Applied Physics Letters</i> , 1999 , 75, 1908-1910	3.4	204
274	Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. <i>Nature Nanotechnology</i> , 2014 , 9, 106-10	28.7	181
273	Solid-state single photon sources: the nanowire antenna. <i>Optics Express</i> , 2009 , 17, 2095-110	3.3	171
272	Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. <i>Nature Physics</i> , 2006 , 2, 759-764	16.2	171

271	Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. <i>Physical Review Letters</i> , 2011 , 106, 103601	7.4	158
270	Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. <i>Physical Review A</i> , 2007 , 75,	2.6	145
269	InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si. <i>Applied Physics Letters</i> , 1996 , 68, 3123-3125	3.4	136
268	Intraband absorption in n-doped InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 1997 , 71, 2785-2787	3.4	135
267	Third-harmonic generation in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 1999 , 59, 983	039833	3 131
266	Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. <i>Physical Review B</i> , 2003 , 68,	3.3	113
265	Electrically driven high-Q quantum dot-micropillar cavities. <i>Applied Physics Letters</i> , 2008 , 92, 091107	3.4	111
264	Optical investigation of the self-organized growth of InAs/GaAs quantum boxes. <i>Journal of Crystal Growth</i> , 1995 , 150, 351-356	1.6	111
263	Long polaron lifetime in InAs/GaAs self-assembled quantum dots. <i>Physical Review Letters</i> , 2002 , 88, 177	4,02	110
262	Monolayer-scale optical investigation of segregation effects in semiconductor heterostructures. <i>Physical Review B</i> , 1992 , 45, 6313-6316	3.3	100
261	Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. <i>Physical Review Letters</i> , 2013 , 110, 177402	7.4	99
2 60	Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories. <i>Physical Review A</i> , 2011 , 84,	2.6	99
259	Imaging the wave-function amplitudes in cleaved semiconductor quantum boxes. <i>Physical Review Letters</i> , 2000 , 85, 1068-71	7.4	97
258	Controlling the dynamics of a coupled atom-cavity system by pure dephasing. <i>Physical Review B</i> , 2010 , 81,	3.3	96
257	Near-surface GaAs/Ga0.7Al0.3As quantum wells: Interaction with the surface states. <i>Physical Review B</i> , 1990 , 41, 12945-12948	3.3	92
256	Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots. <i>Physical Review Letters</i> , 2001 , 87, 207401	7.4	91
255	Pure emitter dephasing: A resource for advanced solid-state single-photon sources. <i>Physical Review A</i> , 2009 , 79,	2.6	90
254	Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots. <i>Journal of Applied Physics</i> , 1997 , 82, 3396-3401	2.5	90

253	Scanning tunneling microscopy and scanning tunneling spectroscopy of self-assembled InAs quantum dots. <i>Applied Physics Letters</i> , 1998 , 73, 96-98	3.4	87
252	In situ probing at the growth temperature of the surface composition of (InGa)As and (InAl)As. <i>Applied Physics Letters</i> , 1992 , 61, 2096-2098	3.4	84
251	Surface segregation in IIIIV alloys. <i>Journal of Crystal Growth</i> , 1991 , 111, 141-150	1.6	83
250	In-plane polarized intraband absorption in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 1998 , 58, 10562-10567	3.3	80
249	Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots. <i>Physical Review B</i> , 2002 , 65,	3.3	78
248	Experimental probing of quantum-well eigenstates. <i>Physical Review Letters</i> , 1989 , 62, 2172-2175	7.4	75
247	Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots. <i>Topics in Applied Physics</i> , 2003 , 269-314	0.5	74
246	Optical study of GaAs/AlAs pillar microcavities with elliptical cross section. <i>Applied Physics Letters</i> , 1998 , 72, 1421-1423	3.4	74
245	Interferometric correlation spectroscopy in single quantum dots. <i>Applied Physics Letters</i> , 2002 , 81, 2737	'- <u>3</u> .739	73
244	Line narrowing in single semiconductor quantum dots: Toward the control of environment effects. <i>Physical Review B</i> , 2002 , 66,	3.3	73
243	High quality ultrathin InAs/GaAs quantum wells grown by standard and low-temperature modulated-fluxes molecular beam epitaxy. <i>Applied Physics Letters</i> , 1988 , 53, 568-570	3.4	73
242	Solid-state single photon sources: light collection strategies. European Physical Journal D, 2002 , 18, 197	-21:50	71
241	Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots. <i>Applied Physics Letters</i> , 2001 , 78, 2327-2329	3.4	68
240	Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 2000 , 61, 5562-5570	3.3	68
239	InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2001 , 9, 131-139	3	67
238	Controlling the emission profile of a nanowire with a conical taper. <i>Optics Letters</i> , 2008 , 33, 1693-5	3	64
237	Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high performance on-chip micro-supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19254-19262	13	63
236	Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment. <i>Physical Review B</i> , 2007 , 75,	3.3	63

(2001-2004)

235	Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots. <i>Physical Review B</i> , 2004 , 69,	3.3	61	
234	Probing exciton localization in nonpolar GaNAlN quantum dots by single-dot optical spectroscopy. <i>Physical Review B</i> , 2007 , 75,	3.3	56	
233	Dynamical equilibrium between excitons and free carriers in quantum wells. <i>Solid State Communications</i> , 1995 , 95, 287-293	1.6	55	
232	Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. <i>Physical Review Letters</i> , 2015 , 114, 193601	7.4	53	
231	Analysis of the Filling Pattern Dependence of the Photonic Bandgap for Two-dimensional Systems. Journal of Modern Optics, 1994 , 41, 295-310	1.1	53	
230	Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2009 , 26, 2396	1.7	51	
229	Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2004 , 96, 1104-1110	2.5	51	
228	Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 2001 , 63,	3.3	51	
227	Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy. <i>Applied Physics Letters</i> , 1999 , 74, 911-913	3.4	51	
226	Single photon emission from individual GaAs quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 2206-22	083.4	50	
225	Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots. <i>Physical Review B</i> , 2001 , 63,	3.3	49	
224	Temperature dependence of intersublevel absorption in InAs/GaAs self-assembled quantum dots. <i>Applied Physics Letters</i> , 2002 , 80, 4620-4622	3.4	48	
223	Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit. <i>Applied Physics Letters</i> , 2004 , 84, 4726-4728	3.4	44	
222	Saturation of intraband absorption and electron relaxation time in n-doped InAs/GaAs self-assembled quantum dots. <i>Applied Physics Letters</i> , 1998 , 73, 3818-3821	3.4	43	
221	Optical properties of some III V strained-layer superlattices. <i>Superlattices and Microstructures</i> , 1989 , 5, 51-58	2.8	42	
220	Spontaneous emission spectrum of a two-level atom in a very-high-Q cavity. <i>Physical Review A</i> , 2008 , 77,	2.6	41	
219	Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy. <i>Applied Physics Letters</i> , 2007 , 91, 143120	3.4	41	
218	Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks. <i>Applied Physics Letters</i> , 2001 , 78, 2828-2830	3.4	41	

217	Structural and optical properties of high quality InAs/GaAs short-period superlattices grown by migration-enhanced epitaxy. <i>Applied Physics Letters</i> , 1989 , 54, 30-32	3.4	41
216	Designs for high-efficiency electrically pumped photonic nanowire single-photon sources. <i>Optics Express</i> , 2010 , 18, 21204-18	3.3	40
215	Dynamical ultrafast all-optical switching of planar GaAsAlAs photonic microcavities. <i>Applied Physics Letters</i> , 2007 , 91, 111103	3.4	40
214	Fast exciton spin relaxation in single quantum dots. <i>Physical Review B</i> , 2005 , 71,	3.3	39
213	Correlated photon emission from a single IIIVI quantum dot. <i>Applied Physics Letters</i> , 2004 , 85, 6251-625	3 3.4	38
212	Quantum box size effect on vertical self-alignment studied using cross-sectional scanning tunneling microscopy. <i>Applied Physics Letters</i> , 1999 , 74, 2608-2610	3.4	38
211	Strong-coupling regime in pillar semiconductor microcavities. <i>Superlattices and Microstructures</i> , 1997 , 22, 371-374	2.8	37
210	Study of isolated cubic GaN quantum dots by low-temperature cathodoluminescence. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 26, 203-206	3	37
209	Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots. <i>Physical Review B</i> , 2001 , 65,	3.3	37
208	Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. <i>Physical Review B</i> , 2009 , 80,	3.3	36
207	Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. <i>Applied Physics Letters</i> , 2011 , 98, 161114	3.4	36
206	A fiber-coupled quantum-dot on a photonic tip. <i>Applied Physics Letters</i> , 2016 , 108, 011112	3.4	36
205	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. <i>Applied Physics Letters</i> , 2012 , 100, 031111	3.4	35
204	Linearly polarized, single-mode spontaneous emission in a photonic nanowire. <i>Physical Review Letters</i> , 2012 , 108, 077405	7.4	35
203	Efficient photonic mirrors for semiconductor nanowires. <i>Optics Letters</i> , 2008 , 33, 2635-7	3	35
202	Photonic bandgap of two-dimensional dielectric crystals. <i>Solid-State Electronics</i> , 1994 , 37, 1341-1344	1.7	35
201	Exciton spin manipulation in InAsCaAs quantum dots: Exchange interaction and magnetic field effects. <i>Physical Review B</i> , 2005 , 71,	3.3	34
2 00	Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble. <i>Applied Physics Letters</i> , 2005 , 86, 041904	3.4	34

	199	Optical anisotropy and light extraction efficiency of MBE grown GaN nanowires epilayers. <i>Optics Express</i> , 2011 , 19, 527-39	3.3	32	
	198	Quantum communication with quantum dot spins. <i>Physical Review B</i> , 2007 , 75,	3.3	32	
	197	Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities. <i>Applied Physics Letters</i> , 2010 , 96, 071103	3.4	31	
	196	Growth and characterization of AlGaInAs lattice matched to InP grown by molecular-beam epitaxy. <i>Journal of Applied Physics</i> , 1988 , 63, 400-403	2.5	31	
	195	Resonant driving of a single photon emitter embedded in a mechanical oscillator. <i>Nature Communications</i> , 2017 , 8, 76	17.4	30	
:	194	Numerical and Experimental Study of the \$Q\$ Factor of High-\$Q\$ Micropillar Cavities. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1470-1483	2	29	
	193	Design of broadband high-efficiency superconducting-nanowire single photon detectors. Superconductor Science and Technology, 2016 , 29, 065016	3.1	29	
	192	All-optical switching of a microcavity repeated at terahertz rates. <i>Optics Letters</i> , 2013 , 38, 374-6	3	28	
	191	quantum boxes obtained by self-organized growth: Intrinsic electronic properties and applications. <i>Solid-State Electronics</i> , 1996 , 40, 807-814	1.7	28	
	190	Purcell effect for CdSeInSe quantum dots placed into hybrid micropillars. <i>Applied Physics Letters</i> , 2005 , 87, 233114	3.4	27	
	189	Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots. <i>Applied Physics Letters</i> , 1999 , 75, 835-837	3.4	27	
	188	A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 418-422	3	26	
	187	Harnessing light with photonic nanowires: fundamentals and applications to quantum optics. <i>ChemPhysChem</i> , 2013 , 14, 2393-402	3.2	25	
	186	Highly directive and Gaussian far-field emission from giant photonic trumpets. <i>Applied Physics Letters</i> , 2015 , 107, 141106	3.4	25	
	185	Integrated terahertz source based on three-wave mixing of whispering-gallery modes. <i>Optics Letters</i> , 2008 , 33, 2416-8	3	25	
	184	Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity. <i>Physical Review B</i> , 2008 , 78,	3.3	24	
	183	High Q whispering gallery modes in GaAs/AlAs pillar microcavities. <i>Optics Express</i> , 2007 , 15, 17291-304	3.3	24	
	182	High resolution in situ measurement of the surface composition of InxGa1-xAs and InxAl1-xAs at growth temperature. <i>Journal of Crystal Growth</i> , 1993 , 127, 981-985	1.6	24	

181	Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate. <i>Applied Physics Letters</i> , 1997 , 70, 2398-2400	3.4	23
180	Nano-fabrication with focused ion beams. <i>Microelectronic Engineering</i> , 2001 , 57-58, 865-875	2.5	23
179	Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 2157-2159	3.4	23
178	Linear and dynamical photoinduced dichroisms of InAs©aAs self-assembled quantum dots: Population relaxation and decoherence measurements. <i>Physical Review B</i> , 2006 , 73,	3.3	22
177	Novel prospects for self-assembled InAs/GaAs quantum boxes. <i>Journal of Crystal Growth</i> , 1999 , 201-202, 1109-1116	1.6	22
176	Direct probing of type-II band configurations in semiconductor superlattices. <i>Physical Review B</i> , 1989 , 40, 6450-6453	3.3	21
175	Single artificial atoms in silicon emitting at telecom wavelengths. <i>Nature Electronics</i> , 2020 , 3, 738-743	28.4	21
174	Strong and weak coupling regime in pillar semiconductor microcavities. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 915-919	3	20
173	Electron capture time measurements in GaAs/AlGaAs quantum-well infrared photodetectors: Photoresponse saturation by a free-electron laser. <i>Journal of Applied Physics</i> , 1995 , 78, 1224-1229	2.5	20
172	Efficient tuning of the carrier capture efficiency of quantum wells by introducing a barrier asymmetry. <i>Applied Physics Letters</i> , 1993 , 63, 240-242	3.4	20
171	Optimal irreversible stimulated emission. New Journal of Physics, 2012, 14, 083029	2.9	19
170	Energy transfer through laterally confined Bragg mirrors and its impact on pillar microcavities. <i>IEEE Journal of Quantum Electronics</i> , 2005 , 41, 1323-1329	2	19
169	Femtosecond-luminescence study of electron transfer in type-II GaAs/AlAs superlattices: Intervalley scattering versus state mixing. <i>Physical Review B</i> , 1994 , 49, 13560-13563	3.3	19
168	Monolayer scale study of segregation effects in InAs/GaAs heterostructures. <i>Journal of Crystal Growth</i> , 1993 , 127, 536-540	1.6	19
167	Quantum dot spontaneous emission control in a ridge waveguide. <i>Applied Physics Letters</i> , 2015 , 106, 041112	3.4	18
166	Electron and hole spin cooling efficiency in InAs quantum dots: The role of nuclear field. <i>Applied Physics Letters</i> , 2010 , 96, 172108	3.4	18
165	Far-field radiation from quantum boxes located in pillar microcavities. <i>Optics Letters</i> , 2001 , 26, 1595-7	3	18
164	Resonant excitation of intraband absorption in InAs/GaAs self-assembled quantum dots. <i>Journal of Applied Physics</i> , 1998 , 84, 4356-4362	2.5	18

163	Chapter 3 Optical Studies of Strained III-V Heterolayers. Semiconductors and Semimetals, 1990, 55-118	0.6	18	
162	Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. <i>Optics Express</i> , 2013 , 21, 23130-44	3.3	16	
161	Towards a single-mode single photon source based on single quantum dots. <i>Journal of Luminescence</i> , 2001 , 94-95, 797-803	3.8	16	
160	Quantum wires in multidimensional microcavities: Effects of photon dimensionality on emission properties. <i>Physical Review B</i> , 2002 , 66,	3.3	16	
159	Midinfrared unipolar photoluminescence in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 1999 , 60, 15589-15592	3.3	16	
158	Large and Uniform Optical Emission Shifts in Quantum Dots Strained along Their Growth Axis. <i>Nano Letters</i> , 2016 , 16, 3215-20	11.5	16	
157	A broadband tapered nanocavity for efficient nonclassical light emission. <i>Optics Express</i> , 2016 , 24, 2090	143234	16	
156	Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. <i>Electrochemistry Communications</i> , 2018 , 93, 5-9	5.1	16	
155	Strain-Gradient Position Mapping of Semiconductor Quantum Dots. <i>Physical Review Letters</i> , 2017 , 118, 117401	7.4	15	
154	Harvesting, Coupling, and Control of Single-Exciton Coherences in Photonic Waveguide Antennas. <i>Physical Review Letters</i> , 2016 , 116, 163903	7.4	15	
153	Differential ultrafast all-optical switching of the resonances of a micropillar cavity. <i>Applied Physics Letters</i> , 2014 , 105, 111115	3.4	15	
152	Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. <i>Physical Review B</i> , 2010 , 82,	3.3	15	
151	Relation between growth procedure and confinement properties of CdSeInSe quantum dots. <i>Physical Review B</i> , 2006 , 74,	3.3	15	
150	Control of the two-dimensional E hree-dimensional transition of self-organized CdSe/ZnSe quantum dots. <i>Nanotechnology</i> , 2005 , 16, 1116-1118	3.4	15	
149	Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots. <i>Physical Review B</i> , 2002 , 66,	3.3	15	
148	Growth of InGaAs/GaAs quantum wells with perfectly abrupt interfaces by molecular beam epitaxy. <i>Applied Physics Letters</i> , 1993 , 62, 3452-3454	3.4	15	
147	Quantum optics with quantum dots. European Physical Journal D, 2014, 68, 1	1.3	14	
146	Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. <i>Applied Physics Letters</i> , 2011 , 99, 233106	3.4	14	

145	Monitoring stimulated emission at the single-photon level in one-dimensional atoms. <i>Physical Review A</i> , 2012 , 85,	2.6	14
144	Metal-organic vapor-phase epitaxy of defect-free InGaAs/GaAs quantum dots emitting around 1.3fh. <i>Journal of Crystal Growth</i> , 2002 , 235, 89-94	1.6	14
143	Single quantum dot spectroscopy of CdSe/ZnSe grown on vicinal GaAs substrates. <i>Applied Physics Letters</i> , 2003 , 82, 2227-2229	3.4	14
142	Optical investigation of the band structure of InAs/GaAs short-period superlattices. <i>Applied Physics Letters</i> , 1989 , 55, 559-561	3.4	14
141	Universal optimal broadband photon cloning and entanglement creation in one-dimensional atoms. <i>Physical Review A</i> , 2012 , 86,	2.6	13
140	Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer. <i>Optics Express</i> , 2018 , 26, 17697-17704	3.3	12
139	Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs. <i>Journal of Applied Physics</i> , 2008 , 104, 083105	2.5	12
138	Observation of hot luminescence and slow inter-sub-band relaxation in Si-doped GaNAlxGa1NN (x=0.11, 0.25) multi-quantum-well structures. <i>Journal of Applied Physics</i> , 2006 , 99, 093513	2.5	12
137	New method to induce 2DBD transition of strained CdSe/ZnSe layers. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 26, 119-123	3	12
136	Disorder-induced photoluminescence up-conversion in InAs/GaAs quantum-dot samples. <i>Journal of Applied Physics</i> , 2002 , 91, 5489-5491	2.5	12
135	Strong Purcell effect for InAs quantum boxes in high-Q wet-etched microdisks. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 641-645	3	12
134	Growth of InGaAs/GaAs heterostructures with abrupt interfaces on the monolayer scale. <i>Journal of Crystal Growth</i> , 1995 , 150, 467-472	1.6	12
133	Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics. <i>Superconductor Science and Technology</i> , 2017 , 30, 035005	3.1	11
132	Comment on "single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity". <i>Physical Review Letters</i> , 2003 , 90, 229701; author reply 229702	7.4	11
131	Quantum-mechanical versus semiclassical capture and transport properties in quantum well laser structures. <i>Optical and Quantum Electronics</i> , 1994 , 26, S679-S689	2.4	11
130	Broad Diversity of Near-Infrared Single-Photon Emitters in Silicon. <i>Physical Review Letters</i> , 2021 , 126, 083602	7.4	11
129	InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 1998 , 2, 804-808	3	10
128	Efficient coupling of Er-doped silicon-rich oxide to microdisk whispering gallery modes. <i>Applied Physics Letters</i> , 2005 , 86, 111117	3.4	10

127	Optical properties of single non-polar GaN quantum dots. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1652-1656	1.3	10
126	Tensorial phase control in nonlinear meta-optics. <i>Optica</i> , 2021 , 8, 269	8.6	10
125	Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 2630	1.7	9
124	How to avoid non-radiative escape of excitons from quantum dots?. <i>Physica Status Solidi (B): Basic Research</i> , 2004 , 241, 542-545	1.3	9
123	Pumpprobe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 26, 59-62	3	9
122	Electron Phonon Interaction and Polaron Effects in Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 1941-1946	1.4	9
121	Photonic Bourglass design for efficient quantum light emission. Optics Letters, 2019, 44, 2617	3	9
120	Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire. <i>Physical Review B</i> , 2018 , 97,	3.3	8
119	Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, A1	1.7	8
118	Glancing angle EXAFS of encapsulated self-assembled InAs/InP quantum wires and InAs/GaAs quantum dots. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 101, 174-180	3.1	8
117	Glancing-angle diffraction anomalous fine structure of InAs quantum dots and quantum wires. Journal of Synchrotron Radiation, 2001 , 8, 536-8	2.4	8
116	Optical investigation of some statistic and kinetic aspects of the nucleation and growth of inas islands on gaas. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 37, 8-16	3.1	8
115	Modulated molecular beam epitaxy: a successful route toward high quality highly strained heterostructures. <i>Journal of Crystal Growth</i> , 1991 , 111, 205-209	1.6	8
114	Static strain tuning of quantum dots embedded in a photonic wire. <i>Applied Physics Letters</i> , 2018 , 112, 123102	3.4	7
113	Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect. <i>Optics Express</i> , 2016 , 24, 239-53	3.3	7
112	High-quality NbN nanofilms on a GaN/AlN heterostructure. AIP Advances, 2014, 4, 107123	1.5	7
111	Fast decoherence of slowly relaxing polarons in semiconductor InAs quantum dots. <i>Europhysics Letters</i> , 2005 , 70, 390-396	1.6	7
110	All-optical spatial light modulator with megahertz modulation rates. <i>Optics Letters</i> , 1995 , 20, 2099-101	3	7

109	A novel high-efficiency single-mode single photon source. <i>Annales De Physique</i> , 2007 , 32, 151-154		7
108	Prospects of High-Efficiency Quantum Boxes Obtained by Direct Epitaxial Growth. <i>NATO ASI Series Series B: Physics</i> , 1995 , 357-381		7
107	Weak coupling effects in high-Q electrically driven micropillars. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, 381-384		6
106	Toward high-efficiency quantum-dot single-photon sources 2004 , 5361, 88		6
105	Optical orientation and spin relaxation of resident electrons in n-doped InAs/GaAs self-assembled quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 20, 404-411	3	6
104	Vacuum E ield Rabi Splitting for Quantum Boxes in Pillar Microcavities?. <i>Physica Status Solidi A</i> , 2000 , 178, 145-148		6
103	Fast photorefractive materials using quantum wells. Optical Materials, 1995, 4, 348-353	3.3	6
102	Self-organized growth of quantum boxes. <i>Applied Surface Science</i> , 1996 , 92, 526-531	6.7	6
101	Plasmons in the modulated and confined 2DEG: A Raman scattering study. <i>Superlattices and Microstructures</i> , 1994 , 15, 441-445	2.8	6
100	Differentiation of the non radiative recombination properties of the two interfaces of MBE grown GaAs-GaAlAs quantum wells. <i>Superlattices and Microstructures</i> , 1990 , 8, 417-419	2.8	6
99	Design of Quantum Dot-Nanowire Single-Photon Sources that are Immune to Thermomechanical Decoherence. <i>Physical Review Letters</i> , 2019 , 123, 247403	7.4	6
98	Inducing micromechanical motion by optical excitation of a single quantum dot. <i>Nature Nanotechnology</i> , 2021 , 16, 283-287	28.7	6
97	Optical properties of ultrathin InAs quantum-well-heterostructures. <i>Applied Physics Letters</i> , 2012 , 101, 012105	3.4	5
96	High-quality InAs/GaAs quantum dots grown by low-pressure metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 1998 , 195, 524-529	1.6	5
95	Energy dependence of the electron-hole in-plane anisotropy in InAs/GaAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 3900-3903		5
94	Cavity QED with a single QD inside an optical microcavity. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3879-3884	1.3	5
93	Transient linear dichroism in InAs/GaAs self-assembled quantum dots. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2004 , 1, 585-588		5
92	Polaron states in InAs/GaAs quantum dots: strong electronphonon coupling regime. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 155-160	3	5

(2000-2002)

91	Spin dynamics of neutral and charged excitons in InAs/GaAs quantum dots: towards Q-bit implementation?. <i>Superlattices and Microstructures</i> , 2002 , 32, 157-170	2.8	5	
90	Far-infrared probe of size dispersion and population fluctuations in doped self-assembled quantum dots. <i>European Physical Journal B</i> , 2003 , 35, 209-216	1.2	5	
89	Ultrafast relaxation of photoexcited carriers in quantum wells and superlattices. <i>Semiconductor Science and Technology</i> , 1994 , 9, 722-726	1.8	5	
88	A nanowire optical nanocavity for broadband enhancement of spontaneous emission. <i>Applied Physics Letters</i> , 2021 , 118, 194002	3.4	5	
87	All-Optical Mapping of the Position of Quantum Dots Embedded in a Nanowire Antenna. <i>Nano Letters</i> , 2018 , 18, 6434-6440	11.5	5	
86	Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot. <i>Physical Review Applied</i> , 2017 , 8,	4.3	4	
85	Tuning of a nonlinear THz emitter. Optics Express, 2012, 20, 17678-83	3.3	4	
84	Effects of localized perturbations on Fano resonance in GaAs?AlAs quantum well. <i>Solid State Communications</i> , 1998 , 105, 747-750	1.6	4	
83	Vertical electron transport study in GaN/AlN/GaN heterostructures. <i>Superlattices and Microstructures</i> , 2006 , 40, 507-512	2.8	4	
82	The effect of AlAs submonolayer insertion on the oscillator strength of excitons in GaAs/AlGaAs quantum wells. <i>Semiconductor Science and Technology</i> , 2006 , 21, 1018-1021	1.8	4	
81	Strained InGaAs quantum well vertical cavity surface emitting lasers emitting at 1.3 [micro sign]m. <i>Electronics Letters</i> , 2006 , 42, 584	1.1	4	
80	Room temperature lasing of InAs/GaAs quantum dots in the whispering gallery modes of a silica microsphere. <i>Optics Express</i> , 2007 , 15, 10052-60	3.3	4	
79	Photoluminescence up-conversion of single InAs/GaAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 105-108	3	4	
78	Spin polarization dynamics in n-doped InAs/GaAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 508-511	3	4	
77	Tailoring photon emission statistics of a single quantum box for quantum communications. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 606-609	3	4	
76	Generation of non-classical light by single quantum dots. <i>Journal of Luminescence</i> , 2003 , 102-103, 67-7	1 3.8	4	
75	Solid-state triggered single photon sources. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 16, 51-58	3	4	
74	1.3 The lectroluminescence of LP-MOVPE grown InAs/GaAs quantum dots, and influence of the re-growth temperature on the spectral response. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 78, 145-147	3.1	4	

73	Strained V-groove quantum wires in multidimensional microcavities. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2000 , 74, 158-164	3.1	4
72	Focused ion beam patterning of IIII crystals at low temperature: A method for improving the ion-induced defect localization. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2000 , 18, 3162		4
71	Effect of asymmetric barriers on performances of GaAs/AlGaAs quantum well detectors. <i>Journal of Applied Physics</i> , 1995 , 78, 2803-2807	2.5	4
70	☑Self-organized☑ InAs/GaAs quantum dots. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1995 , 17, 1285-1293		4
69	Solid-State Cavity Quantum Electrodynamics Using Quantum Dots. <i>Acta Physica Polonica A</i> , 2001 , 100, 129-143	0.6	4
68	Improvement of the critical temperature of NbTiN films on III-nitride substrates. <i>Superconductor Science and Technology</i> , 2019 , 32, 035008	3.1	4
67	Room temperature emission from Er-doped silicon-rich oxide microtorus. <i>EPJ Applied Physics</i> , 2006 , 34, 81-84	1.1	3
66	Time domain investigation on excitonic spectral diffusion in CdSe quantum dots grown on vicinal surface GaAs substrates. <i>Solid State Communications</i> , 2004 , 130, 63-66	1.6	3
65	Temperature dependence of the spin dynamics in undoped and n-doped InAs/GaAs quantum dots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 594-597		3
64	Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2003 , 17, 97-98	3	3
63	Influence of the thermal treatment on the optical and structural properties of 1.3 fb emitting LP-MOVPE grown InAs/GaAs quantum dots. <i>Optical Materials</i> , 2001 , 17, 263-266	3.3	3
62	Optically produced local space charge field in a quantum heterostructure; towards an all-optical thin film photorefractive device. <i>Optical Materials</i> , 1995 , 4, 358-361	3.3	3
61	Optical study of the band structure of InAs/GaAs ordered alloys. Surface Science, 1990 , 229, 456-458	1.8	3
60	Quantum Dot parametric source. <i>Optics Communications</i> , 2014 , 327, 27-30	2	2
59	Temporal shaping of single-photon pulses 2015 ,		2
58	Tunable quantum dot parametric source. <i>Optics Express</i> , 2013 , 21, 22367-73	3.3	2
57	Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths. <i>Optics Letters</i> , 2007 , 32, 2747-9	3	2
56	Huang R hys side-bands in the emission line of a single InAs quantum dot. <i>Physica E:</i> Low-Dimensional Systems and Nanostructures, 2004 , 21, 336-340	3	2

55	Strong electron-phonon coupling regime in self-assembled quantum dots. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2004 , 1, 1391-1396		2
54	Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2002 , 13, 220-223	3	2
53	Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique. <i>Comptes Rendus Physique</i> , 2003 , 4, 701-713	1.4	2
52	Polaron relaxation in InAs/GaAs self-assembled quantum dots. <i>Physica Status Solidi (B): Basic Research</i> , 2003 , 238, 254-257	1.3	2
51	Giant optical anisotropy in single InAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 26, 51-54	3	2
50	Mid-Infrared Second-Order Nonlinear Susceptibility in InAs/GaAs Quantum Dots. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 224, 595-598	1.3	2
49	Second-harmonic generation in InAs/GaAs self-assembled quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2000 , 7, 155-158	3	2
48	Cavity switching: A novel resource for solid-state quantum optics 2017 ,		1
47	Microring Diode Laser for THz Generation. <i>IEEE Transactions on Terahertz Science and Technology</i> , 2013 , 3, 472-478	3.4	1
46	1.3 fb VCSELs: InGaAs/GaAs, GaInNAs/GaAs multiple quantum wells and InAs/GaAs quantum dots: three candidates as active material 2007 ,		1
45	Counter polarized photoluminescence of trions in n-doped selfassembled InAs/GaAs quantumdots. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 430-433		1
44	Les boltes quantiques semi-conductrices : des atomes artificiels pour l'optique quantique. <i>Comptes Rendus Physique</i> , 2002 , 3, 29-40	1.4	1
43	Decoherence and environment effects in single InGaAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 17, 7-10	3	1
42	ElectronBhonon interaction and intraband magneto-optical transitions in doped InAs/GaAs quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 17, 84-85	3	1
41	Intersublevel Emission in InAs/GaAs Quantum Dots. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 224, 579-583	1.3	1
40	Optical study of probability densities in quantum well eigenstates. <i>Surface Science</i> , 1990 , 229, 433-438	1.8	1
39	Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. <i>Light: Science and Applications</i> , 2021 , 10, 215	16.7	1
38	Mid-infrared optical characterization of InGaAsP. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2018 , 35, C25	1.7	1

37	Probing microcavity switching events on the picosecond time scale using quantum dots as a broadband internal fluorescent source. <i>APL Photonics</i> , 2020 , 5, 126104	5.2	1
36	Highly Strained InAs/GaAs Short Period Superlattices. <i>NATO ASI Series Series B: Physics</i> , 1991 , 533-546		1
35	Analysis of MBE growth and atomic exchange in thin highly strained InAs layers. <i>Microscopy Microanalysis Microstructures</i> , 1994 , 5, 213-236		1
34	Improvement of critical temperature of niobium nitride deposited on 8-inch silicon wafers thanks to an AlN buffer layer. <i>Superconductor Science and Technology</i> , 2021 , 34, 045002	3.1	1
33	Plasma Heavily Nitrogen-Doped Vertically Oriented Graphene Nanosheets (N-VOGNs) for High Volumetric Performance On-Chip Supercapacitors in Ionic Liquid. <i>Current Smart Materials</i> , 2018 , 3, 32-3	89 ¹	1
32	Purcell effect on CdSe/ZnSe quantum dots in pillar microcavities. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 827-830	1.3	O
31	Exciton Spin Dynamics in Self-Organized InAs/GaAs Quantum Dots. <i>Physica Status Solidi A</i> , 2002 , 190, 523-527		0
30	Purcell effect on CdSe/ZnSe quantum dots em bedded in pillar microcavities. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2005 , 2, 3829-3832		O
29	Quantum-dot-based integrated non-linear sources. IET Optoelectronics, 2015, 9, 82-87	1.5	
28	Towards a Terahertz Room-Temperature Integrated Source. <i>Procedia Computer Science</i> , 2011 , 7, 205-2	06 1.6	
27	Experimental Study of the Lasing Modes of 1.3-\$mu\$m Highly Strained InGaAs–GaAs Quantum-Well Oxide-Confined VCSELs. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 377-379	2.2	
26	PumpBrobe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. <i>Semiconductor Science and Technology</i> , 2005 , 20, L10-L13	1.8	
25	Neodymium photoluminescence in Whispering Gallery Modes of toroidal microcavities. <i>European Physical Journal Special Topics</i> , 2006 , 135, 245-246		
24	Gallium arsenide second-window quantum dot VCSEL. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2006 , 3, 395-398		
23	GaN/AlGaN superlattices for optoelectronics in the mid-infrared. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1669-1673	1.3	
22	Towards a mid-infrared polaron laser using InAs/GaAs self-assembled quantum dots. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3895-3899	1.3	
21	Two time scales of the electronfiole spin relaxation in InAs/GaAs quantum dots. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3928-3931	1.3	
20	Interplay between polarization anisotropy and longitudinal spin relaxation in semiconductor quantum dots. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2006 , 32, 426-429	3	

Bolles quantiques II-VI comme sources de photons uniques. European Physical Journal Special Topics 19 , **2004**, 119, 165-166 Enhanced exciton IIO phonon coupling in doped quantum dots. Physica E: Low-Dimensional Systems 18 and Nanostructures, 2004, 21, 400-404 Microphotoluminescence spectroscopy of CdSe quantum dots grown on vicinal-surface and 17 exact-orientation substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 791-794 Anti-Stokes Photoluminescence in Self-Assembled InAs/GaAs Quantum Dots. Physica Status Solidi A 16 , **2002**, 190, 505-509 Non-linear infrared properties of InAs/GaAs self-assembled quantum dots. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated 1.2 15 Equipment, 2003, 507, 569-571 Single photon emission from individual semiconductor nanostructures. Physica E: Low-Dimensional 14 Systems and Nanostructures, 2003, 17, 568-571 Strong coupling for a single quantum dot in a microdisk. Physica Status Solidi C: Current Topics in 13 Solid State Physics, **2005**, 2, 3825-3828 Exciton[light Interaction in Three-Dimensional Microcavities. Physica Status Solidi A, 2001, 183, 11-16 12 Mid-Infrared Emission in InAs/GaAs Self-Assembled Quantum Dots. Materials Research Society 11 *Symposia Proceedings*, **1999**, 571, 279 Tailoring of the carrier capture efficiency of a quantum well. Solid-State Electronics, 1994, 37, 1167-1170_{1.7} 10 Differentiation of the nonradiative recombination properties of the two interfaces of molecular 9 beam epitaxy grown GaAs-GaAlAs quantum wells 1991, 1361, 131 Non-linear infrared properties of InAs/GaAs self-assembled quantum dots 2003, 569-571 Photon Correlations and Cross-Correlations from a Single CdTe/ZnTe Quantum Dot. Acta Physica 0.6 Polonica A, 2004, 106, 169-176 High-Q whispering gallery modes in pillar microcavities. Annales De Physique, 2007, 32, 123-126 Isoelectronic Ultrathin Layers: A Probe for Heterostructure States. Springer Series in Solid-state 0.4 Sciences, 1990, 276-284 The InGaAlAs System for Strained and Unstrained Heterostructures on InP Substrate. NATO ASI Series Series B: Physics, 1991, 635-642 InAs Quantum Boxes: Active Probes For Air/GaAs Photonic Bandgap Microstructures 1996, 219-235 Intraband Absorption Spectroscopy of Self-Assembled Quantum Dots 1998, 141-146

Advanced Superconducting Nanowire Single Photon Detectors for Photonic Quantum Technologies. *Proceedings (mdpi)*, **2018**, 2, 1096

0.3