Jean-Michel Gerard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2839914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs. Physical Review Letters, 1994, 73, 716-719.	7.8	1,053
2	Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 1998, 81, 1110-1113.	7.8	946
3	Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity. Physical Review Letters, 2005, 95, 067401.	7.8	665
4	A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 2010, 4, 174-177.	31.4	519
5	Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Applied Physics Letters, 2001, 79, 2865-2867.	3.3	472
6	Spin Relaxation Quenching in Semiconductor Quantum Dots. Physical Review Letters, 2001, 86, 1634-1637.	7.8	385
7	Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Physical Review B, 1999, 60, 13276-13279.	3.2	374
8	Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. Journal of Lightwave Technology, 1999, 17, 2089-2095.	4.6	355
9	Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons. Physical Review Letters, 1999, 83, 4152-4155.	7.8	347
10	A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 0, , .	31.4	331
11	Quantum Cascade of Photons in Semiconductor Quantum Dots. Physical Review Letters, 2001, 87, .	7.8	289
12	Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Applied Physics Letters, 1996, 69, 449-451.	3.3	263
13	High-Q wet-etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 1999, 75, 1908-1910.	3.3	240
14	Optically Driven Spin Memory inn-Doped InAs-GaAs Quantum Dots. Physical Review Letters, 2002, 89, 207401.	7.8	234
15	Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nature Nanotechnology, 2014, 9, 106-110.	31.5	224
16	Solid-state single photon sources: the nanowire antenna. Optics Express, 2009, 17, 2095.	3.4	214
17	Inhibition, Enhancement, and Control of Spontaneous Emission in Photonic Nanowires. Physical Review Letters, 2011, 106, 103601.	7.8	194
18	Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Physics, 2006, 2, 759-764.	16.7	190

#	Article	IF	CITATIONS
19	Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Physical Review A, 2007, 75, .	2.5	173
20	InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si. Applied Physics Letters, 1996, 68, 3123-3125.	3.3	155
21	Intraband absorption in n-doped InAs/GaAs quantum dots. Applied Physics Letters, 1997, 71, 2785-2787.	3.3	142
22	Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Physical Review B, 1999, 59, 9830-9833.	3.2	140
23	Electrically driven high-Q quantum dot-micropillar cavities. Applied Physics Letters, 2008, 92, .	3.3	135
24	Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories. Physical Review A, 2011, 84, .	2.5	130
25	Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Physical Review B, 2003, 68, .	3.2	127
26	Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs Quantum Dot and a Gaussian Optical Beam. Physical Review Letters, 2013, 110, 177402.	7.8	125
27	Optical investigation of the self-organized growth of InAs/GaAs quantum boxes. Journal of Crystal Growth, 1995, 150, 351-356.	1.5	123
28	Long Polaron Lifetime in InAs/GaAs Self-Assembled Quantum Dots. Physical Review Letters, 2002, 88, 177402.	7.8	119
29	Solid-state single photon sources: light collection strategies. European Physical Journal D, 2002, 18, 197-210.	1.3	112
30	Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Physical Review B, 2010, 81, .	3.2	112
31	Monolayer-scale optical investigation of segregation effects in semiconductor heterostructures. Physical Review B, 1992, 45, 6313-6316.	3.2	103
32	Imaging the Wave-Function Amplitudes in Cleaved Semiconductor Quantum Boxes. Physical Review Letters, 2000, 85, 1068-1071.	7.8	102
33	Pure emitter dephasing: A resource for advanced solid-state single-photon sources. Physical Review A, 2009, 79, .	2.5	102
34	Near-surface GaAs/Ga0.7Al0.3As quantum wells: Interaction with the surface states. Physical Review B, 1990, 41, 12945-12948.	3.2	99
35	Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots. Journal of Applied Physics, 1997, 82, 3396-3401.	2.5	99
36	In situprobing at the growth temperature of the surface composition of (InGa)As and (InAl)As. Applied Physics Letters, 1992, 61, 2096-2098.	3.3	96

#	Article	IF	CITATIONS
37	Photoluminescence Up-Conversion in Single Self-AssembledInAs/GaAsQuantum Dots. Physical Review Letters, 2001, 87, 207401.	7.8	95
38	Scanning tunneling microscopy and scanning tunneling spectroscopy of self-assembled InAs quantum dots. Applied Physics Letters, 1998, 73, 96-98.	3.3	90
39	Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots. Topics in Applied Physics, 0, , 269-314.	0.8	88
40	Surface segregation in Ill–V alloys. Journal of Crystal Growth, 1991, 111, 141-150.	1.5	87
41	InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 9, 131-139.	2.7	86
42	Optical study of GaAs/AlAs pillar microcavities with elliptical cross section. Applied Physics Letters, 1998, 72, 1421-1423.	3.3	85
43	Controlling the emission profile of a nanowire with a conical taper. Optics Letters, 2008, 33, 1693.	3.3	85
44	In-plane polarized intraband absorption in InAs/GaAs self-assembled quantum dots. Physical Review B, 1998, 58, 10562-10567.	3.2	83
45	Experimental probing of quantum-well eigenstates. Physical Review Letters, 1989, 62, 2172-2175.	7.8	82
46	Far-infrared magnetospectroscopy of polaron states in self-assembled InAs/GaAs quantum dots. Physical Review B, 2002, 65, .	3.2	79
47	Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2001, 78, 2327-2329.	3.3	78
48	Interferometric correlation spectroscopy in single quantum dots. Applied Physics Letters, 2002, 81, 2737-2739.	3.3	78
49	Line narrowing in single semiconductor quantum dots: Toward the control of environment effects. Physical Review B, 2002, 66, .	3.2	78
50	High quality ultrathin InAs/GaAs quantum wells grown by standard and lowâ€ŧemperature modulatedâ€fluxes molecular beam epitaxy. Applied Physics Letters, 1988, 53, 568-570.	3.3	75
51	Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots. Physical Review B, 2000, 61, 5562-5570.	3.2	74
52	Single artificial atoms in silicon emitting at telecom wavelengths. Nature Electronics, 2020, 3, 738-743.	26.0	72
53	Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high performance on-chip micro-supercapacitors. Journal of Materials Chemistry A, 2015, 3, 19254-19262.	10.3	71
54	Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment. Physical Review B, 2007, 75, .	3.2	68

#	Article	IF	CITATIONS
55	Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters. Physical Review Letters, 2015, 114, 193601.	7.8	68
56	Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots. Physical Review B, 2004, 69, .	3.2	65
57	Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots. Physical Review B, 2001, 63, .	3.2	63
58	Dynamical equilibrium between excitons and free carriers in quantum wells. Solid State Communications, 1995, 95, 287-293.	1.9	60
59	Single photon emission from individual GaAs quantum dots. Applied Physics Letters, 2003, 82, 2206-2208.	3.3	59
60	Probing exciton localization in nonpolarGaNâ^•AlNquantum dots by single-dot optical spectroscopy. Physical Review B, 2007, 75, .	3.2	59
61	Analysis of the Filling Pattern Dependence of the Photonic Bandgap for Two-dimensional Systems. Journal of Modern Optics, 1994, 41, 295-310.	1.3	57
62	Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2004, 96, 1104-1110.	2.5	57
63	Second-harmonic generation resonant withs-ptransition in InAs/GaAs self-assembled quantum dots. Physical Review B, 2001, 63, .	3.2	56
64	Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit. Applied Physics Letters, 2004, 84, 4726-4728.	3.3	56
65	Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2396.	2.1	55
66	Designs for high-efficiency electrically pumped photonic nanowire single-photon sources. Optics Express, 2010, 18, 21204.	3.4	54
67	A fiber-coupled quantum-dot on a photonic tip. Applied Physics Letters, 2016, 108, .	3.3	54
68	Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy. Applied Physics Letters, 1999, 74, 911-913.	3.3	53
69	Temperature dependence of intersublevel absorption in InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2002, 80, 4620-4622.	3.3	51
70	Efficient photonic mirrors for semiconductor nanowires. Optics Letters, 2008, 33, 2635.	3.3	51
71	Saturation of intraband absorption and electron relaxation time in n-doped InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 1998, 73, 3818-3821.	3.3	48
72	Dynamical ultrafast all-optical switching of planar GaAsâ^•AlAs photonic microcavities. Applied Physics Letters, 2007, 91, .	3.3	48

#	Article	IF	CITATIONS
73	Ultimate fast optical switching of a planar microcavity in the telecom wavelength range. Applied Physics Letters, 2011, 98, 161114.	3.3	48
74	Broad Diversity of Near-Infrared Single-Photon Emitters in Silicon. Physical Review Letters, 2021, 126, 083602.	7.8	48
75	Spontaneous emission spectrum of a two-level atom in a very-high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>cavity. Physical Review A, 2008, 77, .</mml:math 	2.5	47
76	Structural and optical properties of high quality InAs/GaAs shortâ€period superlattices grown by migrationâ€enhanced epitaxy. Applied Physics Letters, 1989, 54, 30-32.	3.3	46
77	Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks. Applied Physics Letters, 2001, 78, 2828-2830.	3.3	45
78	Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy. Applied Physics Letters, 2007, 91, 143120.	3.3	45
79	Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire. Physical Review Letters, 2012, 108, 077405.	7.8	45
80	Optical properties of some III–V strained-layer superlattices. Superlattices and Microstructures, 1989, 5, 51-58.	3.1	44
81	Fast exciton spin relaxation in single quantum dots. Physical Review B, 2005, 71, .	3.2	44
82	Correlated photon emission from a single II–VI quantum dot. Applied Physics Letters, 2004, 85, 6251-6253.	3.3	43
83	Design of broadband high-efficiency superconducting-nanowire single photon detectors. Superconductor Science and Technology, 2016, 29, 065016.	3.5	43
84	Strong-coupling regime in pillar semiconductor microcavities. Superlattices and Microstructures, 1997, 22, 371-374.	3.1	42
85	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Applied Physics Letters, 2012, 100, .	3.3	41
86	A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 418-422.	2.7	40
87	Quantum box size effect on vertical self-alignment studied using cross-sectional scanning tunneling microscopy. Applied Physics Letters, 1999, 74, 2608-2610.	3.3	39
88	Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 2009, 80, .	3.2	39
89	Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nature Communications, 2017, 8, 76.	12.8	39
90	Photonic bandgap of two-dimensional dielectric crystals. Solid-State Electronics, 1994, 37, 1341-1344.	1.4	38

#	Article	IF	CITATIONS
91	Efficient acoustic phonon broadening in single self-assembled InAs/GaAs quantum dots. Physical Review B, 2001, 65, .	3.2	38
92	Growth and characterization of AlGaInAs lattice matched to InP grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1988, 63, 400-403.	2.5	37
93	Study of isolated cubic GaN quantum dots by low-temperature cathodoluminescence. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 203-206.	2.7	37
94	Exciton spin manipulation inInAsâ^•GaAsquantum dots: Exchange interaction and magnetic field effects. Physical Review B, 2005, 71, .	3.2	37
95	Numerical and Experimental Study of the \$Q\$ Factor of High-\$Q\$ Micropillar Cavities. IEEE Journal of Quantum Electronics, 2010, 46, 1470-1483.	1.9	37
96	Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble. Applied Physics Letters, 2005, 86, 041904.	3.3	36
97	Quantum communication with quantum dot spins. Physical Review B, 2007, 75, .	3.2	36
98	Optical anisotropy and light extraction efficiency of MBE grown GaN nanowires epilayers. Optics Express, 2011, 19, 527.	3.4	36
99	Harnessing Light with Photonic Nanowires: Fundamentals and Applications to Quantum Optics. ChemPhysChem, 2013, 14, 2393-2402.	2.1	36
100	Highly directive and Gaussian far-field emission from "giant―photonic trumpets. Applied Physics Letters, 2015, 107, .	3.3	36
101	Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities. Applied Physics Letters, 2010, 96, 071103.	3.3	34
102	All-optical switching of a microcavity repeated at terahertz rates. Optics Letters, 2013, 38, 374.	3.3	33
103	Tensorial phase control in nonlinear meta-optics. Optica, 2021, 8, 269.	9.3	33
104	High Q whispering gallery modes in GaAs/AlAs pillar microcavities. Optics Express, 2007, 15, 17291.	3.4	31
105	Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 1999, 75, 835-837.	3.3	30
106	Integrated terahertz source based on three-wave mixing of whispering-gallery modes. Optics Letters, 2008, 33, 2416.	3.3	30
107	quantum boxes obtained by self-organized growth: Intrinsic electronic properties and applications. Solid-State Electronics, 1996, 40, 807-814.	1.4	29
108	Purcell effect for CdSeâ^•ZnSe quantum dots placed into hybrid micropillars. Applied Physics Letters, 2005, 87, 233114.	3.3	29

#	Article	IF	CITATIONS
109	Detection of Single W-Centers in Silicon. ACS Photonics, 2022, 9, 2337-2345.	6.6	29
110	Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity. Physical Review B, 2008, 78, .	3.2	28
111	Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate. Applied Physics Letters, 1997, 70, 2398-2400.	3.3	26
112	Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots. Applied Physics Letters, 2001, 79, 2157-2159.	3.3	25
113	Energy transfer through laterally confined Bragg mirrors and its impact on pillar microcavities. IEEE Journal of Quantum Electronics, 2005, 41, 1323-1329.	1.9	25
114	Inducing micromechanical motion by optical excitation of a single quantum dot. Nature Nanotechnology, 2021, 16, 283-287.	31.5	25
115	High resolution in situ measurement of the surface composition of InxGa1-xAs and InxAl1-xAs at growth temperature. Journal of Crystal Growth, 1993, 127, 981-985.	1.5	24
116	Nano-fabrication with focused ion beams. Microelectronic Engineering, 2001, 57-58, 865-875.	2.4	24
117	Linear and dynamical photoinduced dichroisms ofInAsâ^•GaAsself-assembled quantum dots: Population relaxation and decoherence measurements. Physical Review B, 2006, 73, .	3.2	24
118	Quantum dot spontaneous emission control in a ridge waveguide. Applied Physics Letters, 2015, 106, .	3.3	24
119	A broadband tapered nanocavity for efficient nonclassical light emission. Optics Express, 2016, 24, 20904.	3.4	24
120	Strong and weak coupling regime in pillar semiconductor microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 915-919.	2.7	23
121	Novel prospects for self-assembled InAs/GaAs quantum boxes. Journal of Crystal Growth, 1999, 201-202, 1109-1116.	1.5	23
122	Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry. Electrochemistry Communications, 2018, 93, 5-9.	4.7	22
123	Direct probing of type-II band configurations in semiconductor superlattices. Physical Review B, 1989, 40, 6450-6453.	3.2	21
124	Chapter 3 Optical Studies of Strained III-V Heterolayers. Semiconductors and Semimetals, 1990, , 55-118.	0.7	21
125	Efficient tuning of the carrier capture efficiency of quantum wells by introducing a barrier asymmetry. Applied Physics Letters, 1993, 63, 240-242.	3.3	21
126	Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam. Physical Review B, 2010, 82, .	3.2	21

#	Article	IF	CITATIONS
127	Optimal irreversible stimulated emission. New Journal of Physics, 2012, 14, 083029.	2.9	21
128	Strain-Gradient Position Mapping of Semiconductor Quantum Dots. Physical Review Letters, 2017, 118, 117401.	7.8	21
129	Monolayer scale study of segregation effects in InAs/GaAs heterostructures. Journal of Crystal Growth, 1993, 127, 536-540.	1.5	20
130	Growth of InGaAs/GaAs quantum wells with perfectly abrupt interfaces by molecular beam epitaxy. Applied Physics Letters, 1993, 62, 3452-3454.	3.3	20
131	Electron capture time measurements in GaAs/AlGaAs quantumâ€well infrared photodetectors: Photoresponse saturation by a freeâ€electron laser. Journal of Applied Physics, 1995, 78, 1224-1229.	2.5	20
132	Harvesting, Coupling, and Control of Single-Exciton Coherences in Photonic Waveguide Antennas. Physical Review Letters, 2016, 116, 163903.	7.8	20
133	Femtosecond-luminescence study of electron transfer in type-II GaAs/AlAs superlattices: Intervalley scattering versus state mixing. Physical Review B, 1994, 49, 13560-13563.	3.2	19
134	Efficient coupling of Er-doped silicon-rich oxide to microdisk whispering gallery modes. Applied Physics Letters, 2005, 86, 111117.	3.3	19
135	Resonant excitation of intraband absorption in InAs/GaAs self-assembled quantum dots. Journal of Applied Physics, 1998, 84, 4356-4362.	2.5	18
136	Far-field radiation from quantum boxes located in pillar microcavities. Optics Letters, 2001, 26, 1595.	3.3	18
137	Towards a single-mode single photon source based on single quantum dots. Journal of Luminescence, 2001, 94-95, 797-803.	3.1	18
138	Electron and hole spin cooling efficiency in InAs quantum dots: The role of nuclear field. Applied Physics Letters, 2010, 96, .	3.3	18
139	Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013, 21, 23130.	3.4	18
140	Quantum optics with quantum dots. European Physical Journal D, 2014, 68, 1.	1.3	18
141	Midinfrared unipolar photoluminescence in InAs/GaAs self-assembled quantum dots. Physical Review B, 1999, 60, 15589-15592.	3.2	17
142	Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots. Physical Review B, 2002, 66, .	3.2	17
143	Large and Uniform Optical Emission Shifts in Quantum Dots Strained along Their Growth Axis. Nano Letters, 2016, 16, 3215-3220.	9.1	17
144	Optical investigation of the band structure of InAs/GaAs shortâ€period superlattices. Applied Physics Letters, 1989, 55, 559-561.	3.3	16

#	Article	IF	CITATIONS
145	Quantum wires in multidimensional microcavities: Effects of photon dimensionality on emission properties. Physical Review B, 2002, 66, .	3.2	16
146	Single quantum dot spectroscopy of CdSe/ZnSe grown on vicinal GaAs substrates. Applied Physics Letters, 2003, 82, 2227-2229.	3.3	16
147	Control of the two-dimensional–three-dimensional transition of self-organized CdSe/ZnSe quantum dots. Nanotechnology, 2005, 16, 1116-1118.	2.6	16
148	Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs. Journal of Applied Physics, 2008, 104, .	2.5	16
149	Monitoring stimulated emission at the single-photon level in one-dimensional atoms. Physical Review A, 2012, 85, .	2.5	16
150	Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Applied Physics Letters, 2014, 105, .	3.3	16
151	Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics. Superconductor Science and Technology, 2017, 30, 035005.	3.5	16
152	Metal-organic vapor-phase epitaxy of defect-free InGaAs/GaAs quantum dots emitting around 1.3μm. Journal of Crystal Growth, 2002, 235, 89-94.	1.5	15
153	Relation between growth procedure and confinement properties ofCdSeâ^•ZnSequantum dots. Physical Review B, 2006, 74, .	3.2	15
154	Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Applied Physics Letters, 2011, 99, .	3.3	15
155	Universal optimal broadband photon cloning and entanglement creation in one-dimensional atoms. Physical Review A, 2012, 86, .	2.5	15
156	Toward high-efficiency quantum-dot single-photon sources. , 2004, 5361, 88.		14
157	Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer. Optics Express, 2018, 26, 17697.	3.4	14
158	Photonic "hourglass―design for efficient quantum light emission. Optics Letters, 2019, 44, 2617.	3.3	14
159	Quantum-mechanical versus semiclassical capture and transport properties in quantum well laser structures. Optical and Quantum Electronics, 1994, 26, S679-S689.	3.3	13
160	Growth of InGaAs/GaAs heterostructures with abrupt interfaces on the monolayer scale. Journal of Crystal Growth, 1995, 150, 467-472.	1.5	13
161	Strong Purcell effect for InAs quantum boxes in high-Q wet-etched microdisks. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 641-645.	2.7	13
162	Static strain tuning of quantum dots embedded in a photonic wire. Applied Physics Letters, 2018, 112, .	3.3	13

#	Article	IF	CITATIONS
163	A nanowire optical nanocavity for broadband enhancement of spontaneous emission. Applied Physics Letters, 2021, 118, .	3.3	13
164	Disorder-induced photoluminescence up-conversion in InAs/GaAs quantum-dot samples. Journal of Applied Physics, 2002, 91, 5489-5491.	2.5	12
165	New method to induce 2D–3D transition of strained CdSe/ZnSe layers. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 119-123.	2.7	12
166	Observation of hot luminescence and slow inter-sub-band relaxation in Si-doped GaNâ^•AlxGa1â^'xN (x=0.11, 0.25) multi-quantum-well structures. Journal of Applied Physics, 2006, 99, 093513.	2.5	12
167	Competition between electronic Kerr and free-carrier effects in an ultimate-fast optically switched semiconductor microcavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2630.	2.1	12
168	Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity. Journal of the Optical Society of America B: Optical Physics, 2012, 29, A1.	2.1	12
169	A novel high-efficiency single-mode single photon source. Annales De Physique, 2007, 32, 151-154.	0.2	12
170	Optical investigation of some statistic and kinetic aspects of the nucleation and growth of inas islands on gaas. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 8-16.	3.5	11
171	Comment on "Single-Mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity― Physical Review Letters, 2003, 90, 229701; author reply 229702.	7.8	11
172	Optical properties of single non-polar GaN quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 1652-1656.	1.5	11
173	High-quality NbN nanofilms on a GaN/AlN heterostructure. AIP Advances, 2014, 4, 107123.	1.3	11
174	Modulated molecular beam epitaxy: a successful route toward high quality highly strained heterostructures. Journal of Crystal Growth, 1991, 111, 205-209.	1.5	10
175	Fast photorefractive materials using quantum wells. Optical Materials, 1995, 4, 348-353.	3.6	10
176	InAs quantum boxes in GaAs/AlAs pillar microcavities: from spectroscopic investigations to spontaneous emission control. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 804-808.	2.7	10
177	How to avoid non-radiative escape of excitons from quantum dots?. Physica Status Solidi (B): Basic Research, 2004, 241, 542-545.	1.5	10
178	Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire. Physical Review B, 2018, 97, .	3.2	10
179	Improvement of the critical temperature of NbTiN films on III-nitride substrates. Superconductor Science and Technology, 2019, 32, 035008.	3.5	10
180	Electron Phonon Interaction and Polaron Effects in Quantum Dots. Japanese Journal of Applied Physics, 2001, 40, 1941-1946.	1.5	9

#	Article	IF	CITATIONS
181	Pump–probe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 59-62.	2.7	9
182	Design of Quantum Dot-Nanowire Single-Photon Sources that are Immune to Thermomechanical Decoherence. Physical Review Letters, 2019, 123, 247403.	7.8	9
183	Plasmons in the modulated and confined 2DEG: A Raman scattering study. Superlattices and Microstructures, 1994, 15, 441-445.	3.1	8
184	Self-organized growth of quantum boxes. Applied Surface Science, 1996, 92, 526-531.	6.1	8
185	Glancing-angle diffraction anomalous fine structure of InAs quantum dots and quantum wires. Journal of Synchrotron Radiation, 2001, 8, 536-538.	2.4	8
186	Glancing angle EXAFS of encapsulated self-assembled InAs/InP quantum wires and InAs/GaAs quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 174-180.	3.5	8
187	Boosting photon storage. Nature Materials, 2003, 2, 140-141.	27.5	8
188	Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot. Physical Review Applied, 2017, 8, .	3.8	8
189	Prospects of High-Efficiency Quantum Boxes Obtained by Direct Epitaxial Growth. NATO ASI Series Series B: Physics, 1995, , 357-381.	0.2	8
190	Ultrafast relaxation of photoexcited carriers in quantum wells and superlattices. Semiconductor Science and Technology, 1994, 9, 722-726.	2.0	7
191	All-optical spatial light modulator with megahertz modulation rates. Optics Letters, 1995, 20, 2099.	3.3	7
192	Strained V-groove quantum wires in multidimensional microcavities. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 158-164.	3.5	7
193	Fast decoherence of slowly relaxing polarons in semiconductor InAs quantum dots. Europhysics Letters, 2005, 70, 390-396.	2.0	7
194	Strained InGaAs quantum well vertical cavity surface emitting lasers emitting at 1.3â€[micro sign]m. Electronics Letters, 2006, 42, 584.	1.0	7
195	Weak coupling effects in highâ€Q electrically driven micropillars. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 381-384.	0.8	7
196	Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect. Optics Express, 2016, 24, 239.	3.4	7
197	All-Optical Mapping of the Position of Quantum Dots Embedded in a Nanowire Antenna. Nano Letters, 2018, 18, 6434-6440.	9.1	7
198	Differentiation of the non radiative recombination properties of the two interfaces of MBE grown GaAs-GaAlAs quantum wells. Superlattices and Microstructures, 1990, 8, 417-419.	3.1	6

#	Article	IF	CITATIONS
199	Vacuum–Field Rabi Splitting for Quantum Boxes in Pillar Microcavities?. Physica Status Solidi A, 2000, 178, 145-148.	1.7	6
200	Focused ion beam patterning of III–V crystals at low temperature: A method for improving the ion-induced defect localization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3162.	1.6	6
201	Photoluminescence up-conversion of single InAs/GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 105-108.	2.7	6
202	Transient linear dichroism in InAs/GaAs self-assembled quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 585-588.	0.8	6
203	Optical orientation and spin relaxation of resident electrons in n-doped InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 20, 404-411.	2.7	6
204	Room temperature lasing of InAs/GaAs quantum dots in the whispering gallery modes of a silica microsphere. Optics Express, 2007, 15, 10052.	3.4	6
205	Effect of asymmetric barriers on performances of GaAs/AlGaAs quantum well detectors. Journal of Applied Physics, 1995, 78, 2803-2807.	2.5	5
206	High-quality InAs/GaAs quantum dots grown by low-pressure metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 1998, 195, 524-529.	1.5	5
207	Influence of the thermal treatment on the optical and structural properties of 1.3 μm emitting LP-MOVPE grown InAs/GaAs quantum dots. Optical Materials, 2001, 17, 263-266.	3.6	5
208	Polaron states in InAs/GaAs quantum dots: strong electron–phonon coupling regime. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 155-160.	2.7	5
209	Spin dynamics of neutral and charged excitons in InAs/GaAs quantum dots: towards Q-bit implementation?. Superlattices and Microstructures, 2002, 32, 157-170.	3.1	5
210	Far-infrared probe of size dispersion and population fluctuations in doped self-assembled quantum dots. European Physical Journal B, 2003, 35, 209-216.	1.5	5
211	Energy dependence of the electron-hole in-plane anisotropy in InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3900-3903.	0.8	5
212	Cavity QED with a single QD inside an optical microcavity. Physica Status Solidi (B): Basic Research, 2006, 243, 3879-3884.	1.5	5
213	Tuning of a nonlinear THz emitter. Optics Express, 2012, 20, 17678.	3.4	5
214	Optical properties of ultrathin InAs quantum-well-heterostructures. Applied Physics Letters, 2012, 101, 012105.	3.3	5
215	Mid-infrared optical characterization of InGaAsP. Journal of the Optical Society of America B: Optical Physics, 2018, 35, C25.	2.1	5
216	Optical study of the band structure of InAs/GaAs ordered alloys. Surface Science, 1990, 229, 456-458.	1.9	4

#	Article	IF	CITATIONS
217	Optically produced local space charge field in a quantum heterostructure; towards an all-optical thin film photorefractive device. Optical Materials, 1995, 4, 358-361.	3.6	4
218	«Self-organized» InAs/GaAs quantum dots. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1285-1293.	0.4	4
219	Effects of localized perturbations on Fano resonance in GaAsî—,AlAs quantum well. Solid State Communications, 1998, 105, 747-750.	1.9	4
220	1.3 μm electroluminescence of LP-MOVPE grown InAs/GaAs quantum dots, and influence of the re-growth temperature on the spectral response. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 78, 145-147.	3.5	4
221	Polarization of the interband optical dipole in InAs/GaAs self-organized quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 220-223.	2.7	4
222	Spin polarization dynamics in n-doped InAs/GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 508-511.	2.7	4
223	Tailoring photon emission statistics of a single quantum box for quantum communications. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 606-609.	2.7	4
224	Generation of non-classical light by single quantum dots. Journal of Luminescence, 2003, 102-103, 67-71.	3.1	4
225	Solid-state triggered single photon sources. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 51-58.	2.7	4
226	Room temperature emission from Er-doped silicon-rich oxide microtorus. EPJ Applied Physics, 2006, 34, 81-84.	0.7	4
227	Vertical electron transport study in GaN/AlN/GaN heterostructures. Superlattices and Microstructures, 2006, 40, 507-512.	3.1	4
228	The effect of AlAs submonolayer insertion on the oscillator strength of excitons in GaAs/AlGaAs quantum wells. Semiconductor Science and Technology, 2006, 21, 1018-1021.	2.0	4
229	Improvement of critical temperature of niobium nitride deposited on 8-inch silicon wafers thanks to an AIN buffer layer. Superconductor Science and Technology, 2021, 34, 045002.	3.5	4
230	Solid-State Cavity Quantum Electrodynamics Using Quantum Dots. Acta Physica Polonica A, 2001, 100, 129-143.	0.5	4
231	Second-harmonic generation in InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 155-158.	2.7	3
232	Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 97-98.	2.7	3
233	Polaron relaxation in InAs/GaAs self-assembled quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 254-257.	1.5	3
234	Time domain investigation on excitonic spectral diffusion in CdSe quantum dots grown on vicinal surface GaAs substrates. Solid State Communications, 2004, 130, 63-66.	1.9	3

#	Article	IF	CITATIONS
235	Temperature dependence of the spin dynamics in undoped and n-doped InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 594-597.	0.8	3
236	Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths. Optics Letters, 2007, 32, 2747.	3.3	3
237	Quantum Dot parametric source. Optics Communications, 2014, 327, 27-30.	2.1	3
238	Temporal shaping of single-photon pulses. Proceedings of SPIE, 2015, , .	0.8	3
239	Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science and Applications, 2021, 10, 215.	16.6	3
240	Mid-Infrared Second-Order Nonlinear Susceptibility in InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 595-598.	1.5	2
241	Huang–Rhys side-bands in the emission line of a single InAs quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 336-340.	2.7	2
242	Counter polarized photoluminescence of trions in n-doped selfassembled InAs/GaAs quantumdots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 430-433.	0.8	2
243	Strong electron-phonon coupling regime in self-assembled quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1391-1396.	0.8	2
244	Room temperature operation of Er-doped silicon-rich oxide microcavities supporting high-Q whispering-gallery modes. , 2005, , .		2
245	Giant optical anisotropy in single InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 51-54.	2.7	2
246	1.3 μm VCSELs: InGaAs/GaAs, GaInNAs/GaAs multiple quantum wells and InAs/GaAs quantum dots: three candidates as active material. , 2007, , .		2
247	Tunable quantum dot parametric source. Optics Express, 2013, 21, 22367.	3.4	2
248	Probing microcavity switching events on the picosecond time scale using quantum dots as a broadband internal fluorescent source. APL Photonics, 2020, 5, .	5.7	2
249	Molecular Beam Epitaxy Of AlGaInAs For Optoelectronics. , 1987, , .		1
250	Optical study of probability densities in quantum well eigenstates. Surface Science, 1990, 229, 433-438.	1.9	1
251	Intersublevel Emission in InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 579-583.	1.5	1
252	Pico-second passively mode locked surface-emitting laser with self-assembled semiconductor		1

quantum dot absorber. , 0, , .

#	Article	IF	CITATIONS
253	Exciton Spin Dynamics in Self-Organized InAs/GaAs Quantum Dots. Physica Status Solidi A, 2002, 190, 523-527.	1.7	1
254	Decoherence and environment effects in single InGaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 7-10.	2.7	1
255	Electron–phonon interaction and intraband magneto-optical transitions in doped InAs/GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 84-85.	2.7	1
256	Purcell effect on CdSe/ZnSe quantum dots em bedded in pillar microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3829-3832.	0.8	1
257	Short radiative lifetime of single GaAs quantum dots. AIP Conference Proceedings, 2005, , .	0.4	1
258	Gallium arsenide second-window quantum dot VCSEL. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 395-398.	0.8	1
259	Purcell effect on CdSe/ZnSe quantum dots in pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 827-830.	1.5	1
260	Interplay between polarization anisotropy and longitudinal spin relaxation in semiconductor quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 426-429.	2.7	1
261	A High-Efficiency Electrically-Pumped Single-Photon Source Based On A Photonic Nanowire. , 2010, , .		1
262	Microring Diode Laser for THz Generation. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 472-478.	3.1	1
263	Cavity switching: A novel resource for solid-state quantum optics. , 2017, , .		1
264	Plasma Heavily Nitrogen-Doped Vertically Oriented Graphene Nanosheets (N-VOGNs) for High Volumetric Performance On-Chip Supercapacitors in Ionic Liquid. Current Smart Materials, 2018, 3, 32-39.	0.5	1
265	Nanowire antennas embedding single quantum dots: towards the emission of indistinguishable photons. , 2021, , .		1
266	Strong coupling regime in semiconductor microcavities. European Physical Journal Special Topics, 1999, 09, Pr2-15.	0.2	1
267	Génération de photons uniques monomodes par une boite quantique d'InAs en microcavité. European Physical Journal Special Topics, 2002, 12, 29-39.	0.2	1
268	Highly Strained InAs/GaAs Short Period Superlattices. NATO ASI Series Series B: Physics, 1991, , 533-546.	0.2	1
269	Analysis of MBE growth and atomic exchange in thin highly strained InAs layers. Microscopy Microanalysis Microstructures, 1994, 5, 213-236.	0.4	1
270	Optical and structural properties of 1.3 μm emitting InAs/GaAs quantum dots grown by LP-MOVPE as a function of the re-growth temperature. , 0, , .		0

#	Article	IF	CITATIONS
271	Differentiation of the nonradiative recombination properties of the two interfaces of molecular beam epitaxy grown GaAs-GaAlAs quantum wells. , 1991, 1361, 131.		Ο
272	Tailoring of the carrier capture efficiency of a quantum well. Solid-State Electronics, 1994, 37, 1167-1170.	1.4	0
273	Strong Purcell effect for quantum boxes in micropillars and microdisks. , 0, , .		Ο
274	Strong Purcell effect for quantum boxes in micropillars and microdisks. , 0, , .		0
275	Experimental evidence of spontaneous emission enhancement for quantum boxes in pillar microcavities. Superlattices and Microstructures, 1999, 25, 401-404.	3.1	Ο
276	Cavity-QED experiments on InAs quantum boxes in micropillars and microdisks. , 0, , .		0
277	Mid-Infrared Emission in InAs/GaAs Self-Assembled Quantum Dots. Materials Research Society Symposia Proceedings, 1999, 571, 279.	0.1	Ο
278	Far field radiation pattern from quantum boxes located in micropillars. , 0, , .		0
279	Multidimensional microcavities incorporating quantum wires. , 0, , .		Ο
280	Exciton-Light Interaction in Three-Dimensional Microcavities. Physica Status Solidi A, 2001, 183, 11-16.	1.7	0
281	Isolated quantum dots in micropillars: an efficient single-mode solid-state photon source. , 0, , .		0
282	Anti-Stokes Photoluminescence in Self-Assembled InAs/GaAs Quantum Dots. Physica Status Solidi A, 2002, 190, 505-509.	1.7	0
283	Non-linear infrared properties of InAs/GaAs self-assembled quantum dots. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507, 569-571.	1.6	0
284	Single photon emission from individual semiconductor nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 568-571.	2.7	0
285	Focus section on Cavity QED. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 117-118.	1.4	0
286	Boîtes quantiques II-VI comme sources de photons uniques. European Physical Journal Special Topics, 2004, 119, 165-166.	0.2	0
287	Enhanced exciton–LO phonon coupling in doped quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 400-404	2.7	0
288	Microphotoluminescence spectroscopy of CdSe quantum dots grown on vicinal-surface and exact-orientation substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 791-794.	0.8	0

#	Article	IF	CITATIONS
289	Strong coupling for a single quantum dot in a microdisk. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3825-3828.	0.8	0
290	Room temperature emission from Er-doped silicon-rich oxide toroidal microcavities. , 0, , .		0
291	Pump–probe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. Semiconductor Science and Technology, 2005, 20, L10-L13.	2.0	0
292	Giant Optical Non-Linearity induced by a Single Quantum Dot in a Semiconducting Microcavity. , 2006, ,		0
293	Neodymium photoluminescence in Whispering Gallery Modes of toroidal microcavities. European Physical Journal Special Topics, 2006, 135, 245-246.	0.2	0
294	1.3 \hat{l} 4m strained InGaAs quantum well VCSELs: operation characteristics and transverse modes analysis. , 2006, , .		0
295	GaN/AlGaN superlattices for optoelectronics in the mid-infrared. Physica Status Solidi (B): Basic Research, 2006, 243, 1669-1673.	1.5	0
296	Towards a mid-infrared polaron laser using InAs/GaAs self-assembled quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3895-3899.	1.5	0
297	Two time scales of the electron–hole spin relaxation in InAs/GaAs quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3928-3931.	1.5	0
298	Giant Optical Non-Linearity induced by a Single Quantum Dot in a Semiconducting Microcavity. , 2007, ,		0
299	Observation of hot luminescence and slow intersubband relaxation in GaN/AlGaN multi-quantum-well structures. AIP Conference Proceedings, 2007, , .	0.4	0
300	Electrically driven quantum dot high quality factor micropillar cavities. , 2008, , .		0
301	Electrically driven high-Q quantum dot-micropillar cavities. , 2008, , .		0
302	Surface addressable cavity-confined slow light modes for quantum photonic devices: Design and investigation. , 2009, , .		0
303	What is the real quality factor of an ultrafast planar photonic microcavity?. , 2009, , .		Ο
304	Spatially resolved modes in GaAs/AlAs micropillar resonators. , 2009, , .		0
305	Instantaneous switching of photonic cavity structure by electronic Kerr nonlinearity. , 2009, , .		0
306	Experimental Study of the Lasing Modes of 1.3- <formula formulatype="inline"><tex Notation="TeX">\$mu\$</tex </formula> m Highly Strained InGaAs–GaAs Quantum-Well Oxide-Confined VCSELs. IEEE Photonics Technology Letters, 2009, 21, 377-379.	2.5	0

0

#	Article	IF	CITATIONS
307	High brightness single photon sources based on photonic wires. , 2009, , .		0
308	Quantum optics with quantum dots in photonic wires: Basics and application to "ultrabright" single photon sources. , 2011, , .		0
309	A high-efficiency photonic nanowire single-photon source featuring an inverted conical taper. , 2011, ,		0
310	Quantum-dot based nonlinear source of THz radiation. , 2011, , .		0
311	Towards a Terahertz Room-Temperature Integrated Source. Procedia Computer Science, 2011, 7, 205-206.	2.0	0
312	Design for an electrically-pumped photonic nanowire single-photon source with an efficiency of 89 %. , 2011, , .		0
313	Electrically pumped photonic nanowire single-photon source with an efficiency of 89%. , 2011, , .		0
314	Quantum optics with quantum dots in photonic nanowires. , 2011, , .		0
315	Recent advances for high-efficiency sources of single photons based on photonic nanowires. , 2012, , .		0
316	Quantum optics with quantum dots in photonic nanowires. , 2012, , .		0
317	The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications. Proceedings of SPIE, 2013, , .	0.8	0
318	Frequency dependent dynamics of semiconductor microcavities under ultrafast carrier switching. , 2013, , .		0
319	All-optical switching of a microcavity repeated at terahertz clock rates. , 2013, , .		0
320	Switching spontaneous emission in microcavities in the time domain. , 2013, , .		0
321	Photonic wires and trumpets for ultrabright single photon sources. Proceedings of SPIE, 2013, , .	0.8	0
322	A photonic nanowire trumpet for interfacing a quantum dot and a Gaussian free-space mode. Proceedings of SPIE, 2013, , .	0.8	0
323	Quantum-dot micropillars for parametric THz emission. Proceedings of SPIE, 2013, , .	0.8	0

Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires. , 2014, , .

#	Article	IF	CITATIONS
325	Quantumâ€dotâ€based integrated nonâ€linear sources. IET Optoelectronics, 2015, 9, 82-87.	3.3	0
326	X-ray imaging of single nano-structures: from focused beams to coherent imaging and ptychography. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s147-s147.	0.1	0
327	High absorption efficiency and polarization-insensitivity in superconducting-nanowire single-photon detectors. Proceedings of SPIE, 2017, , .	0.8	Ο
328	X-ray imaging of single semi-conductor nanostructures for photonics and electronics. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C501-C501.	0.1	0
329	Optical localization of quantum dots in tapered nanowires. , 2017, , .		Ο
330	Determination of radial quantum dot position in trumpet nanowires from far field measurements. , 2017, , .		0
331	Advanced Superconducting Nanowire Single Photon Detectors for Photonic Quantum Technologies. Proceedings (mdpi), 2018, 2, .	0.2	Ο
332	Widely Tunable Quantum-Well Laser: OPO Diode Around 2 μm Based on a Coupled Waveguide Heterostructure. , 0, , .		0
333	Deciphering the Influence of Electrolytes on the Energy Storage Mechanism of Vertically-Oriented Graphene Nanosheet Electrodes by Using Advanced Electrogravimetric Methods. Nanomaterials, 2020, 10, 2451.	4.1	Ο
334	Strong Purcell Enhancement in a "Nanopost―Single-Photon Source. , 2021, , .		0
335	Cascade de photons dans les boîtes quantiques uniques. European Physical Journal Special Topics, 2002, 12, 265-266.	0.2	0
336	Non-linear infrared properties of InAs/GaAs self-assembled quantum dots. , 2003, , 569-571.		0
337	Photon Correlations and Cross-Correlations from a Single CdTe/ZnTe Quantum Dot. Acta Physica Polonica A, 2004, 106, 169-176.	0.5	Ο
338	Spin dynamics in undoped and n-doped InAs/GaAs quantum dots. European Physical Journal Special Topics, 2004, 119, 277-278.	0.2	0
339	Experimental characteristics and analysis of transverse modes in 1.3-μm strained InGaAs quantum well VCSELs. , 2006, , .		Ο
340	High-Q whispering gallery modes in pillar microcavities. Annales De Physique, 2007, 32, 123-126.	0.2	0
341	Energy Dependence of the Linear and Dynamical Photo-Induced Dichroisms of InAs/GaAs Quantum Dots. AIP Conference Proceedings, 2007, , .	0.4	0
342	COLOQ'10. Annales De Physique, 2007, 32, 3-9.	0.2	0

#	Article	IF	CITATIONS
343	Photoluminescence Dynamics in ZnO Nanorods. Journal of the Korean Physical Society, 2008, 53, 2884-2887.	0.7	0
344	High Efficiency Single Photon Source: The Photonic Wire Geometry. , 2009, , .		0
345	Isoelectronic Ultrathin Layers: A Probe for Heterostructure States. Springer Series in Solid-state Sciences, 1990, , 276-284.	0.3	Ο
346	The InGaAlAs System for Strained and Unstrained Heterostructures on InP Substrate. NATO ASI Series Series B: Physics, 1991, , 635-642.	0.2	0
347	InAs Quantum Boxes: Active Probes For Air/GaAs Photonic Bandgap Microstructures. , 1996, , 219-235.		Ο
348	Intraband Absorption Spectroscopy of Self-Assembled Quantum Dots. , 1998, , 141-146.		0
349	Quantum optics with quantum dots in photonic wires. , 2016, , .		Ο
350	Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire. , 2017, ,		0
351	Unveiling spin-flip processes in a neutral quantum dot using an anisotropic photonic structure. Physical Review B, 2022, 105, .	3.2	0
352	GROWTH, CHARACTERIZATION AND OPTICAL STUDIES OF InxGa1-xAs / InyAl1-yAs STRAINED-LAYER SUPERLATTICES ON InP. Journal De Physique Colloque, 1987, 48, C5-169-C5-173.	0.2	0
353	Growth of InGaAs/GaAs heterostructures with abrupt interfaces on the monolayer scale. Journal of Crystal Growth, 1995, 150, 467-472.	1.5	0