Torkel Hafting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2839589/publications.pdf

Version: 2024-02-01

29 papers 10,931 citations

393982 19 h-index 28 g-index

32 all docs 32 docs citations

times ranked

32

9226 citing authors

#	Article	IF	CITATIONS
1	Optogenetic pacing of medial septum parvalbumin-positive cells disrupts temporal but not spatial firing in grid cells. Science Advances, 2021, 7, .	4.7	16
2	CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neuroscience and Biobehavioral Reviews, 2021, 126, 398-412.	2.9	27
3	Perineuronal nets stabilize the grid cell network. Nature Communications, 2021, 12, 253.	5. 8	1,386
4	Experimental Pipeline (Expipe): A Lightweight Data Management Platform to Simplify the Steps From Experiment to Data Analysis. Frontiers in Neuroinformatics, 2020, 14, 30.	1.3	6
5	Selective neuromodulation and mutual inhibition within the <scp>CA3–CA2</scp> system can prioritize sequences for replay. Hippocampus, 2020, 30, 1228-1238.	0.9	16
6	The Glutamine Transporter Slc38a1 Regulates GABAergic Neurotransmission and Synaptic Plasticity. Cerebral Cortex, 2019, 29, 5166-5179.	1.6	27
7	Removal of perineuronal nets disrupts recall of a remote fear memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 607-612.	3.3	88
8	Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity. Journal of Neuroscience, 2018, 38, 10102-10113.	1.7	128
9	Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells. PLoS Computational Biology, 2018, 14, e1006156.	1.5	8
10	Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai. Journal of Neural Engineering, 2018, 15, 055002.	1.8	31
11	Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New File Format. Frontiers in Neuroinformatics, 2018, 12, 16.	1.3	15
12	Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity. Journal of Neuroscience, 2017, 37, 1269-1283.	1.7	201
13	Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse. ENeuro, 2017, 4, ENEURO.0379-16.2017.	0.9	95
14	Neuronify: An Educational Simulator for Neural Circuits. ENeuro, 2017, 4, ENEURO.0022-17.2017.	0.9	7
15	Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat. ENeuro, 2017, 4, ENEURO.0059-17.2017.	0.9	18
16	ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms. Journal of Neuroscience Methods, 2015, 245, 182-204.	1.3	45
17	Grid cells require excitatory drive from the hippocampus. Nature Neuroscience, 2013, 16, 309-317.	7.1	320
18	Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 2009, 462, 353-357.	13.7	1,206

TORKEL HAFTING

#	Article	IF	CITATIONS
19	Fragmentation of grid cell maps in a multicompartment environment. Nature Neuroscience, 2009, 12, 1325-1332.	7.1	551
20	Grid cells in mice. Hippocampus, 2008, 18, 1230-1238.	0.9	394
21	Hippocampus-independent phase precession in entorhinal grid cells. Nature, 2008, 453, 1248-1252.	13.7	399
22	Finite Scale of Spatial Representation in the Hippocampus. Science, 2008, 321, 140-143.	6.0	562
23	Entorhinal Grid Cells and the Neural Basis of Navigation. , 2008, , 237-252.		4
24	Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 2007, 446, 190-194.	13.7	610
25	Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y1 subtype. Acta Physiologica, 2006, 188, 21-31.	1.8	13
26	Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex. Science, 2006, 312, 758-762.	6.0	1,464
27	Microstructure of a spatial map in the entorhinal cortex. Nature, 2005, 436, 801-806.	13.7	3,257
28	Inhibition of BK channels contributes to the second phase of the response to TRH in clonal rat anterior pituitary cells. Acta Physiologica Scandinavica, 2004, 180, 347-357.	2.3	9
29	Purinergic activation of BK channels in clonal kidney cells (Vero cells). Acta Physiologica Scandinavica, 2000, 170, 99-109.	2.3	21