List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2839142/publications.pdf Version: 2024-02-01

DALL A LOHNSON

#	Article	IF	CITATIONS
1	Damage detection in a laboratory-scale wellbore applying Time Reversal and Nonlinear Elastic Wave Spectroscopy (TR NEWS). NDT and E International, 2022, 126, 102573.	3.7	0
2	Tremor Waveform Extraction and Automatic Location With Neural Network Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	6.3	2
3	Laboratory earthquake forecasting: A machine learning competition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
4	A 3D Full Stress Tensor Model for Oklahoma. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021113.	3.4	6
5	Learning the Low Frequency Earthquake Activity on the Central San Andreas Fault. Geophysical Research Letters, 2021, 48, e2021GL092951.	4.0	6
6	Probing the Damage Zone at Parkfield. Geophysical Research Letters, 2021, 48, e2021GL093518.	4.0	6
7	Estimation of the orientation of stress in the Earth's crust without earthquake or borehole data. Communications Earth & Environment, 2021, 2, .	6.8	4
8	Attention Network Forecasts Timeâ€ŧoâ€Failure in Laboratory Shear Experiments. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022195.	3.4	9
9	Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning. Nature Communications, 2021, 12, 6480.	12.8	38
10	Predicting fault slip via transfer learning. Nature Communications, 2021, 12, 7319.	12.8	29
11	Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity. Geophysical Research Letters, 2020, 47, e2019GL085888.	4.0	27
12	Machine learning and fault rupture: A review. Advances in Geophysics, 2020, , 57-107.	2.8	18
13	Plate motion in sheared granular fault system. Earth and Planetary Science Letters, 2020, 548, 116481.	4.4	6
14	The Spatiotemporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes. Geophysical Research Letters, 2020, 47, e2020GL088404.	4.0	20
15	An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia. Nature Communications, 2020, 11, 4139.	12.8	18
16	Seasonal and Coseismic Velocity Variation in the Region of L'Aquila From Single Station Measurements and Implications for Crustal Rheology. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019316.	3.4	14
17	Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano. Geophysical Research Letters, 2020, 47, e2019GL085523.	4.0	32
18	Probing Slow Earthquakes With Deep Learning. Geophysical Research Letters, 2020, 47, e2019GL085870.	4.0	34

#	Article	IF	CITATIONS
19	DeepDetect: A Cascaded Region-Based Densely Connected Network for Seismic Event Detection. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 62-75.	6.3	88
20	From Stress Chains to Acoustic Emission. Physical Review Letters, 2019, 123, 048003.	7.8	32
21	Machine Learning Reveals the State of Intermittent Frictional Dynamics in a Sheared Granular Fault. Geophysical Research Letters, 2019, 46, 7395-7403.	4.0	27
22	Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Ultrasonics, 2019, 98, 51-61.	3.9	18
23	Earthquake Detection in 1D Timeâ€Series Data with Feature Selection and Dictionary Learning. Seismological Research Letters, 2019, 90, 563-572.	1.9	14
24	Longâ€Time Relaxation Induced by Dynamic Forcing in Geomaterials. Journal of Geophysical Research: Solid Earth, 2019, 124, 5003-5013.	3.4	20
25	Pairwise Association of Seismic Arrivals with Convolutional Neural Networks. Seismological Research Letters, 2019, 90, 503-509.	1.9	54
26	Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning. Seismological Research Letters, 2019, 90, 1088-1098.	1.9	38
27	Machine learning for data-driven discovery in solid Earth geoscience. Science, 2019, 363, .	12.6	563
28	Earthquake Arrival Association with Backprojection and Graph Theory. Bulletin of the Seismological Society of America, 2019, 109, 2510-2531.	2.3	23
29	Similarity of fast and slow earthquakes illuminated by machine learning. Nature Geoscience, 2019, 12, 69-74.	12.9	96
30	Continuous chatter of the Cascadia subduction zone revealed by machine learning. Nature Geoscience, 2019, 12, 75-79.	12.9	95
31	Nonlinear Resonant Ultrasound Spectroscopy: Assessing Global Damage. , 2019, , 89-101.		4
32	Using Machine Learning to Discern Eruption in Noisy Environments: A Case Study Using CO2â€Driven Coldâ€Water Geyser in ChimayÃ3, New Mexico. Seismological Research Letters, 2019, 90, 591-603.	1.9	13
33	Cohesionâ€Induced Stabilization in Stickâ€Slip Dynamics of Weakly Wet, Sheared Granular Fault Gouge. Journal of Geophysical Research: Solid Earth, 2018, 123, 2115-2126.	3.4	21
34	Estimating Fault Friction From Seismic Signals in the Laboratory. Geophysical Research Letters, 2018, 45, 1321-1329.	4.0	57
35	Earthquake Catalogâ€Based Machine Learning Identification of Laboratory Fault States and the Effects of Magnitude of Completeness. Geophysical Research Letters, 2018, 45, 13,269.	4.0	39
36	Modeling of Stick‧lip Behavior in Sheared Granular Fault Gouge Using the Combined Finiteâ€Ðiscrete Element Method. Journal of Geophysical Research: Solid Earth, 2018, 123, 5774-5792.	3.4	56

#	Article	IF	CITATIONS
37	Simulating stickâ€slip failure in a sheared granular layer using a physicsâ€based constitutive model. Journal of Geophysical Research: Solid Earth, 2017, 122, 295-307.	3.4	16
38	On the role of fluids in stickâ€slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamicsâ€discrete element approach. Journal of Geophysical Research: Solid Earth, 2017, 122, 3689-3700.	3.4	33
39	On the micromechanics of slip events in sheared, fluidâ€saturated fault gouge. Geophysical Research Letters, 2017, 44, 6101-6108.	4.0	41
40	Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault. Earth and Planetary Science Letters, 2017, 460, 164-170.	4.4	38
41	Nonlinear softening of unconsolidated granular earth materials. Journal of Geophysical Research: Solid Earth, 2017, 122, 6998-7008.	3.4	5
42	Machine Learning Predicts Laboratory Earthquakes. Geophysical Research Letters, 2017, 44, 9276-9282.	4.0	272
43	Slow Dynamics and Strength Recovery in Unconsolidated Granular Earth Materials: A Mechanistic Theory. Journal of Geophysical Research: Solid Earth, 2017, 122, 7573-7583.	3.4	11
44	Do Fluids Modify the Stick-Slip Behavior of Sheared Granular Media?. , 2017, , .		4
45	Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation. Physical Review E, 2017, 96, 062901.	2.1	20
46	Slow dynamics of consolidated granular systems: Multi-scale relaxation. Applied Physics Letters, 2017, 111, .	3.3	39
47	Linear and nonlinear elastic properties of dense granular packings: a DEM exploration. EPJ Web of Conferences, 2017, 140, 15033.	0.3	Ο
48	Constraining depth range of <i>S</i> wave velocity decrease after large earthquakes near Parkfield, California. Geophysical Research Letters, 2016, 43, 6129-6136.	4.0	40
49	Nonlinear dynamics induced in a structure by seismic and environmental loading. Journal of the Acoustical Society of America, 2016, 140, 582-590.	1.1	30
50	Fortnightly modulation of San Andreas tremor and low-frequency earthquakes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8601-8605.	7.1	31
51	Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone. Geophysical Research Letters, 2016, 43, 3226-3236.	4.0	38
52	Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions. Geophysical Research Letters, 2016, 43, 1559-1565.	4.0	20
53	Mimicking surface plasmons in acoustics at low frequency. Physical Review B, 2015, 92, .	3.2	25
54	Softening of stressed granular packings with resonant sound waves. Physical Review E, 2015, 92, 022203.	2.1	19

#	Article	IF	CITATIONS
55	Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophysical Research Letters, 2015, 42, 9750-9757.	4.0	28
56	Statistical tests on clustered global earthquake synthetic data sets. Journal of Geophysical Research: Solid Earth, 2015, 120, 5693-5716.	3.4	6
57	Poromechanics of stickâ€slip frictional sliding and strength recovery on tectonic faults. Journal of Geophysical Research: Solid Earth, 2015, 120, 6895-6912.	3.4	39
58	A set of measures for the systematic classification of the nonlinear elastic behavior of disparate rocks. Journal of Geophysical Research: Solid Earth, 2015, 120, 1587-1604.	3.4	70
59	Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California. Geophysical Journal International, 2015, 202, 914-919.	2.4	13
60	Synchronous low frequency earthquakes and implications for deep San Andreas Fault slip. Earth and Planetary Science Letters, 2015, 424, 132-139.	4.4	11
61	Cascading elastic perturbation in Japan due to the 2012 <i>M</i> _w 8.6 Indian Ocean earthquake. Science Advances, 2015, 1, e1500468.	10.3	23
62	Optimized Dynamic Acousto-elasticity Applied to Fatigue Damage and Stress Corrosion Cracking. Journal of Nondestructive Evaluation, 2014, 33, 226-238.	2.4	21
63	Three-dimensional discrete element modeling of triggered slip in sheared granular media. Physical Review E, 2014, 89, 042204.	2.1	40
64	Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control. Nature Communications, 2014, 5, 3188.	12.8	86
65	Triggering of repeating earthquakes in central California. Geophysical Research Letters, 2014, 41, 1499-1505.	4.0	7
66	In situ characterization of shallow elastic nonlinear parameters with Dynamic Acoustoelastic Testing. Journal of Geophysical Research: Solid Earth, 2014, 119, 6907-6923.	3.4	30
67	Dynamic Acousto-Elasticity in a Fatigue-Cracked Sample. Journal of Nondestructive Evaluation, 2014, 33, 216-225.	2.4	34
68	Effect of boundary vibration on the frictional behavior of a dense sheared granular layer. Acta Mechanica, 2014, 225, 2227-2237.	2.1	19
69	Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories. Journal of Applied Physics, 2013, 114, .	2.5	75
70	Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers. Physical Review E, 2013, 87, 012205.	2.1	32
71	Long-term changes of earthquake inter-event times and low-frequency earthquake recurrence in central California. Earth and Planetary Science Letters, 2013, 368, 144-150.	4.4	11
72	Microslips as precursors of large slip events in the stickâ€slip dynamics of sheared granular layers: A discrete element model analysis. Geophysical Research Letters, 2013, 40, 4194-4198.	4.0	50

#	Article	IF	CITATIONS
73	Modeling dynamic triggering of tectonic tremor using a brittleâ€ductile friction model. Geophysical Research Letters, 2013, 40, 5075-5079.	4.0	7
74	Recurrence statistics of great earthquakes. Geophysical Research Letters, 2013, 40, 3021-3025.	4.0	20
75	Acoustic emission and microslip precursors to stickâ€ s lip failure in sheared granular material. Geophysical Research Letters, 2013, 40, 5627-5631.	4.0	105
76	Nonlinear ultrasound: Potential of the cross-correlation method for osseointegration monitoring. Journal of the Acoustical Society of America, 2012, 132, EL202-EL207.	1.1	5
77	Time reversed elastic nonlinearity diagnostic applied to mock osseointegration monitoring applying two experimental models. Journal of the Acoustical Society of America, 2012, 131, 1922-1927.	1.1	12
78	Nonlinear acoustic/seismic waves in earthquake processes. AIP Conference Proceedings, 2012, , .	0.4	5
79	Application of nonlinear elastic resonance spectroscopy for damage detection in concrete. Proceedings of Meetings on Acoustics, 2012, , .	0.3	1
80	Elastic Linear and Nonlinear Behaviors in Slip Processes. Proceedings of Meetings on Acoustics, 2012, ,	0.3	0
81	Nonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to Earth. Journal of Geophysical Research, 2012, 117, .	3.3	30
82	Autoâ€acoustic compaction in steady shear flows: Experimental evidence for suppression of shear dilatancy by internal acoustic vibration. Journal of Geophysical Research, 2012, 117, .	3.3	46
83	Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: Dynamic acoustoelastic testing. Journal of Geophysical Research, 2012, 117, .	3.3	72
84	Are megaquakes clustered?. Geophysical Research Letters, 2012, 39, .	4.0	26
85	Brittle and ductile friction and the physics of tectonic tremor. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	30
86	Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering. Europhysics Letters, 2011, 96, 14001.	2.0	30
87	Experimental implementation of reverse time migration for nondestructive evaluation applications. Journal of the Acoustical Society of America, 2011, 129, EL8-EL14.	1.1	26
88	An alternative quantitative acoustical and electrical method for detection of cell adhesion process in realâ€ŧime. Biotechnology and Bioengineering, 2011, 108, 947-962.	3.3	17
89	High-accuracy acoustic detection of nonclassical component of material nonlinearity. Journal of the Acoustical Society of America, 2011, 130, 2654-2661.	1.1	62
90	Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy. Journal of the Acoustical Society of America, 2011, 130, EL258-EL263.	1.1	14

#	Article	IF	CITATIONS
91	Time reversal reconstruction of finite sized sources in elastic media. Journal of the Acoustical Society of America, 2011, 130, EL219-EL225.	1.1	18
92	Nonlinear acoustic resonances to probe a threaded interface. Journal of Applied Physics, 2010, 107, .	2.5	19
93	Probing hysteretic elasticity in weakly nonlinear materials. , 2010, , .		0
94	Time-reversal methods in geophysics. Physics Today, 2010, 63, 31-35.	0.3	71
95	Using time-reversal to locate non-volcanic tremor and to fulfill the monitoring objectives of the nuclear-test ban treaty. Proceedings of Meetings on Acoustics, 2010, , .	0.3	0
96	Time reversal of continuous-wave, steady-state signals in elastic media. Applied Physics Letters, 2009, 94, 111908.	3.3	17
97	Energy current imaging method for time reversal in elastic media. Applied Physics Letters, 2009, 95, 021907.	3.3	12
98	Experimentally identifying masked sources applying time reversal with the selective source reduction method. Journal of Applied Physics, 2009, 105, 083506.	2.5	11
99	Determination of nonlinear elastic constants and stress monitoring in concrete by coda waves analysis. Proceedings of Meetings on Acoustics, 2009, , .	0.3	1
100	Determination of third order elastic constants in a complex solid applying coda wave interferometry. Applied Physics Letters, 2009, 94, .	3.3	115
101	Tremor source location using time reversal: Selecting the appropriate imaging field. Geophysical Research Letters, 2009, 36, .	4.0	41
102	Robustness of computational time reversal imaging in media with elastic constant uncertainties. Journal of Applied Physics, 2009, 106, .	2.5	15
103	Inducing in situ, nonlinear soil response applying an active source. Journal of Geophysical Research, 2009, 114, .	3.3	22
104	Time reversal and non-linear elastic wave spectroscopy (TR NEWS) techniques. International Journal of Non-Linear Mechanics, 2008, 43, 209-216.	2.6	54
105	Effects of acoustic waves on stick–slip in granular media and implications for earthquakes. Nature, 2008, 451, 57-60.	27.8	179
106	Transitional nonlinear elastic behaviour in dense granular media. Geophysical Research Letters, 2008, 35, .	4.0	45
107	Selective source reduction to identify masked sources using time reversal acoustics. Journal Physics D: Applied Physics, 2008, 41, 155504.	2.8	9
108	SELECTIVE SOURCE REDUCTION TO IDENTIFY MASKED SMALLER SOURCES USING TIME REVERSED ACOUSTICS (TRA). AIP Conference Proceedings, 2008, , .	0.4	1

#	Article	IF	CITATIONS
109	Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources. Journal Physics D: Applied Physics, 2008, 41, 085415.	2.8	22
110	Time Reversal. Acoustics Today, 2008, 4, 5.	1.0	109
111	Induced Dynamic Nonlinear Ground Response at Garner Valley, California. Bulletin of the Seismological Society of America, 2008, 98, 1412-1428.	2.3	16
112	Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. Journal of the Acoustical Society of America, 2007, 121, EL125-EL130.	1.1	137
113	Interaction Dynamics of Elastic Waves with a Complex Nonlinear Scatterer through the Use of a Time Reversal Mirror. Physical Review Letters, 2007, 98, 104301.	7.8	115
114	Application of nonlinear dynamics to monitoring progressive fatigue damage in human cortical bone. Applied Physics Letters, 2007, 91, .	3.3	28
115	Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: Low-strain regime. Journal of Geophysical Research, 2007, 112, .	3.3	83
116	Imaging and Characterizing Damage Using Time Reversed Acoustics. AIP Conference Proceedings, 2007, ,	0.4	1
117	Bone micro-damage assessment using non-linear resonant ultrasound spectroscopy (NRUS) techniques: A feasibility study. Ultrasonics, 2006, 44, e245-e249.	3.9	16
118	Nonlinear Resonant Ultrasound Spectroscopy (NRUS) Applied to Damage Assessment in Bone. AIP Conference Proceedings, 2006, , .	0.4	1
119	Nonclassical Nonlinear Acoustics in Solids: Methods, Applications, and the State of the Art. AIP Conference Proceedings, 2006, , .	0.4	0
120	Modelling Nonlinear Ultrasound Propagation in Bone. AIP Conference Proceedings, 2006, , .	0.4	2
121	Imaging nonlinear scatterers applying the time reversal mirror. Journal of the Acoustical Society of America, 2006, 119, 1514-1518.	1.1	78
122	Nonequilibrium Nonlinear Dynamics in Solids: State of the Art. , 2006, , 49-69.		22
123	Nonlinear Elastic Wave NDE I. Nonlinear Resonant Ultrasound Spectroscopy and Slow Dynamics Diagnostics. AIP Conference Proceedings, 2005, , .	0.4	12
124	Nonlinear Elastic Wave NDE II. Nonlinear Wave Modulation Spectroscopy and Nonlinear Time Reversed Acoustics. AIP Conference Proceedings, 2005, , .	0.4	31
125	Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature, 2005, 437, 871-874.	27.8	343
126	Dynamic triggering of earthquakes. Nature, 2005, 437, 830-830.	27.8	117

#	Article	IF	CITATIONS
127	Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. Journal of the Acoustical Society of America, 2005, 118, 3946-3952.	1.1	117
128	Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. Journal of the Acoustical Society of America, 2005, 117, 124-130.	1.1	213
129	Nonlinear and Nonequilibrium Dynamics in Geomaterials. Physical Review Letters, 2004, 93, 065501.	7.8	102
130	Single-channel time reversal in elastic solids. Journal of the Acoustical Society of America, 2004, 116, 2779-2784.	1.1	73
131	Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments. Journal Physics D: Applied Physics, 2003, 36, 288-293.	2.8	30
132	Study of critical behavior in concrete during curing by application of dynamic linear and nonlinear means. Journal of the Acoustical Society of America, 2003, 113, 1325-1332.	1.1	44
133	Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Applied Physics Letters, 2002, 81, 646-648.	3.3	90
134	LISA simulations of time-reversed acoustic and elastic wave experiments. Journal Physics D: Applied Physics, 2002, 35, 3145-3152.	2.8	13
135	Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity. Journal of Geophysical Research, 2002, 107, ECV 4-1.	3.3	72
136	Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT and E International, 2001, 34, 239-248.	3.7	242
137	Dynamic nonlinear elasticity in geomaterials. Rivista Del Nuovo Cimento, 2001, 24, 1-46.	5.7	257
138	Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy. Research in Nondestructive Evaluation, 2000, 12, 31-42.	1.1	289
139	Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Research in Nondestructive Evaluation, 2000, 12, 17-30.	1.1	413
140	Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Research in Nondestructive Evaluation, 2000, 12, 17-30.	1.1	315
141	Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy. Research in Nondestructive Evaluation, 2000, 12, 31-42.	1.1	68
142	Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials. Physical Review Letters, 1999, 82, 3280-3283.	7.8	114
143	Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials. Physics Today, 1999, 52, 30-36.	0.3	496
144	Nonlinear sediment response during the 1994 Northridge earthquake: Observations and finite source simulations. Journal of Geophysical Research, 1998, 103, 26869-26883	3.3	48

1

#	ARTICLE	IF	CITATIONS
145	On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation. Journal of the Acoustical Society of America, 1997, 101, 1885-1898.	1.1	148
146	Influence of change in physical state on elastic nonlinear response in rock: Significance of effective pressure and water saturation. Journal of Geophysical Research, 1997, 102, 8105-8120.	3.3	69
147	Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature, 1997, 390, 599-602.	27.8	217
148	Nonlinear elasticity and stress-induced anisotropy in rock. Journal of Geophysical Research, 1996, 101, 3113-3124.	3.3	174
149	Resonance and elastic nonlinear phenomena in rock. Journal of Geophysical Research, 1996, 101, 11553-11564.	3.3	191
150	Laboratory study of linear and nonlinear elastic pulse propagation in sandstone. Journal of the Acoustical Society of America, 1996, 100, 1383-1391.	1.1	56
151	Manifestation of nonlinear elasticity in rock: convincing evidence over large frequency and strain intervals from laboratory studies. Nonlinear Processes in Geophysics, 1996, 3, 77-88.	1.3	80
152	Observations of nonlinear elastic wave behavior in sandstone. Journal of the Acoustical Society of America, 1993, 94, 3387-3391.	1.1	117
153	Nonlinear generation of elastic waves in crystalline rock. Journal of Geophysical Research, 1987, 92, 3597-3602.	3.3	59
154	Dynamic Measurements. , 0, , 261-312.		0
155	Field Observations. , 0, , 313-321.		0
156	Nonlinear Elasticity and Nondestructive Evaluation and Imaging. , 0, , 323-367.		1
157	Traditional Theory of Nonlinear Elasticity, Results. , 0, , 39-67.		2
158	Mesoscopic Elastic Elements and Macroscopic Equations of State. , 0, , 69-96.		0
159	Auxiliary Fields. , 0, , 97-112.		0
160	Hysteretic Elastic Elements. , 0, , 113-144.		0
161	The Dynamics of Elastic Systems; Fast and Slow. , 0, , 145-165.		0

162 Q and Issues of Data Modeling/Analysis. , 0, , 167-198.

#	Article	IF	CITATIONS
163	Elastic State Spectroscopies and Elastic State Tomographies. , 0, , 199-225.		0
164	Investigating the influence of earthquake source complexity on back-projection images using convolutional neural networks. Geophysical Journal International, 0, , .	2.4	1