
Nada KraÅ;evec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2838208/publications.pdf

Version: 2024-02-01

ΝΑΠΑ ΚΡΑΔιένες

#	Article	IF	CITATIONS
1	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
2	Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 2020, 7, 5.	5.1	228
3	CYP53A15 of Cochliobolus lunatus, a Target for Natural Antifungal Compounds. Journal of Medicinal Chemistry, 2008, 51, 3480-3486.	6.4	68
4	Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target. PLoS ONE, 2014, 9, e107209.	2.5	59
5	Distribution of MACPF/CDC Proteins. Sub-Cellular Biochemistry, 2014, 80, 7-30.	2.4	38
6	Fungal aegerolysin-like proteins: distribution, activities, and applications. Applied Microbiology and Biotechnology, 2015, 99, 601-610.	3.6	26
7	Aegerolysins: Lipid-binding proteins with versatile functions. Seminars in Cell and Developmental Biology, 2017, 72, 142-151.	5.0	24
8	Antioxidative response patterns of Norway spruce bark to low-density Ceratocystis polonica inoculation. Trees - Structure and Function, 2014, 28, 1145-1160.	1.9	19
9	Benzoic acid derivatives with improved antifungal activity: Design, synthesis, structure–activity relationship (SAR) and CYP53 docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 4264-4276.	3.0	17
10	Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila. Genes and Genomics, 2014, 36, 321-333.	1.4	15
11	Low-density Ceratocystis polonica inoculation of Norway spruce (Picea abies) triggers accumulation of monoterpenes with antifungal properties. European Journal of Forest Research, 2014, 133, 573-583.	2.5	15
12	Phylogenetic Studies, Gene Cluster Analysis, and Enzymatic Reaction Support Anthrahydroquinone Reduction as the Physiological Function of Fungal 17l²â€Hydroxysteroid Dehydrogenase. ChemBioChem, 2017, 18, 77-80.	2.6	13
13	Functional studies of aegerolysin and MACPFâ€like proteins in <i>Aspergillus niger</i> . Molecular Microbiology, 2019, 112, 1253-1269.	2.5	10
14	Targeted Lipid Analysis of Haemolytic Mycelial Extracts of Aspergillus niger. Molecules, 2014, 19, 9051-9069.	3.8	8
15	Expression of human lymphotoxin $\hat{I}\pm$ in Aspergillus niger. Pflugers Archiv European Journal of Physiology, 2000, 440, R083-R085.	2.8	7
16	Lipid-Binding Aegerolysin from Biocontrol Fungus Beauveria bassiana. Toxins, 2021, 13, 820.	3.4	6
17	Unconventional Secretion of Nigerolysins A from Aspergillus Species. Microorganisms, 2020, 8, 1973.	3.6	5
18	Can hTNF-α be successfully produced and secreted in filamentous fungus Aspergillus niger?. Pflugers Archiv European Journal of Physiology, 2000, 439, r084-r086.	2.8	4

#	Article	IF	CITATIONS
19	Antioxidant defences of Norway spruce bark against bark beetles and its associated blue-stain fungus. Agricultura, 2015, 12, 9-18.	0.2	4
20	The Multifaceted Role of Mating Type of the Fungus and Sex of the Host in Studies of Fungal Infections in Humans. Journal of Fungi (Basel, Switzerland), 2022, 8, 461.	3.5	2
21	Gene Expression in Filamentous Fungi: Advantages and Disadvantages Compared to Other Systems. Fungal Biology, 2016, , 201-226.	0.6	1
22	Towards a Fungal Science That Is Independent of Researchers' Gender. Journal of Fungi (Basel,) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50

23	Can hTNF-α be successfully produced and secreted in filamentous fungus Aspergillus nigeri. Pflugers Archiv European Journal of Physiology, 2000, 439, R84-R86.	2.8	0	