Owen Simon Wangensteen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/283811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA metabarcoding reveals the importance of gelatinous zooplankton in the diet of <i>Pandalus borealis</i> , a keystone species in the Arctic. Molecular Ecology, 2022, 31, 1562-1576.	2.0	9
2	DnoisE: distance denoising by entropy. An open-source parallelizable alternative for denoising sequence datasets. PeerJ, 2022, 10, e12758.	0.9	6
3	Mitochondrial Cytochrome Oxidase Subunit 1: A Promising Molecular Marker for Species Identification in Foraminifera. Frontiers in Marine Science, 2022, 9, .	1.2	9
4	Niche separation between two dominant crustacean predators in European estuarine soft-bottom habitats. Ecological Indicators, 2022, 138, 108839.	2.6	1
5	For all audiences: Incorporating immature stages into standardised spider inventories has a major impact on the assessment of biodiversity patterns. Molecular Ecology Resources, 2022, 22, 2319-2332.	2.2	4
6	Monitoring Bacterial Community Dynamics in a Drinking Water Treatment Plant: An Integrative Approach Using Metabarcoding and Microbial Indicators in Large Water Volumes. Water (Switzerland), 2022, 14, 1435.	1.2	6
7	Marine biomonitoring with eDNA: Can metabarcoding of water samples cut it as a tool for surveying benthic communities?. Molecular Ecology, 2021, 30, 3175-3188.	2.0	46
8	Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. Science of the Total Environment, 2021, 754, 142096.	3.9	82
9	Bats as natural samplers: First record of the invasive pest rice water weevil Lissorhoptrus oryzophilus in the Iberian Peninsula. Crop Protection, 2021, 141, 105427.	1.0	16
10	Bat echolocation plasticity in allopatry: a call for caution in acoustic identification of Pipistrellus sp Behavioral Ecology and Sociobiology, 2021, 75, 1.	0.6	10
11	To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics, 2021, 22, 177.	1.2	57
12	Tradeâ€offs between reducing complex terminology and producing accurate interpretations from environmental DNA: Comment on "Environmental DNA: What's behind the term?―by Pawlowski et al., (2020). Molecular Ecology, 2021, 30, 4601-4605.	2.0	60
13	Meroplankton Diversity, Seasonality and Life-History Traits Across the Barents Sea Polar Front Revealed by High-Throughput DNA Barcoding. Frontiers in Marine Science, 2021, 8, .	1.2	18
14	Seasonal Variability in the Zooplankton Community Structure in a Sub-Arctic Fjord as Revealed by Morphological and Molecular Approaches. Frontiers in Marine Science, 2021, 8, .	1.2	13
15	Metabarcoding as a quantitative tool for estimating biodiversity and relative biomass of marine zooplankton. ICES Journal of Marine Science, 2021, 78, 3342-3355.	1.2	33
16	Estuarine molecular bycatch as a landscape-wide biomonitoring tool. Biological Conservation, 2021, 261, 109287.	1.9	9
17	The Two Sides of the Mediterranean: Population Genomics of the Black Sea Urchin Arbacia lixula (Linnaeus, 1758) in a Warming Sea. Frontiers in Marine Science, 2021, 8, .	1.2	5
18	Are well-studied marine biodiversity hotspots still blackspots for animal barcoding?. Global Ecology and Conservation, 2021, 32, e01909.	1.0	20

#	Article	IF	CITATIONS
19	From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecological Applications, 2020, 30, e02036.	1.8	80
20	Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. Journal of Plankton Research, 2020, 42, 564-580.	0.8	9
21	DNA metabarcoding unveils niche overlapping and competition among Caribbean sea urchins. Regional Studies in Marine Science, 2020, 40, 101537.	0.4	5
22	Enjoying the warming Mediterranean: Transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities. Molecular Ecology, 2020, 29, 3299-3315.	2.0	11
23	More Than Expected From Old Sponge Samples: A Natural Sampler DNA Metabarcoding Assessment of Marine Fish Diversity in Nha Trang Bay (Vietnam). Frontiers in Marine Science, 2020, 7, .	1.2	24
24	East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species <i>Paracentrotus lividus</i> (Echinoidea). Diversity and Distributions, 2020, 26, 382-398.	1.9	24
25	DNA Metabarcoding of Deep-Sea Sediment Communities Using COI: Community Assessment, Spatio-Temporal Patterns and Comparison with 18S rDNA. Diversity, 2020, 12, 123.	0.7	25
26	Fishing for mammals: Landscapeâ€level monitoring of terrestrial and semiâ€aquatic communities using eDNA from riverine systems. Journal of Applied Ecology, 2020, 57, 707-716.	1.9	79
27	Towards an Iberian DNA barcode reference library of freshwater macroinvertebrates and fishes. , 2020, 39, 73-92.		11
28	Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity, 2019, 122, 244-259.	1.2	17
29	Diversity and Distribution of Meroplanktonic Larvae in the Pacific Arctic and Connectivity With Adult Benthic Invertebrate Communities. Frontiers in Marine Science, 2019, 6, .	1.2	37
30	Nonâ€specific amplification compromises environmental DNA metabarcoding with COI. Methods in Ecology and Evolution, 2019, 10, 1985-2001.	2.2	202
31	Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environmental DNA, 2019, 1, .	3.1	51
32	DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system. Journal of Paleolimnology, 2019, 62, 425-441.	0.8	16
33	Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals. Journal of Fish Biology, 2019, 95, 679-682.	0.7	50
34	Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecology and Evolution, 2019, 9, 14341-14355.	0.8	52
35	Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Molecular Ecology Resources, 2019, 19, 206-220.	2.2	63
36	Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agriculture, Ecosystems and Environment, 2019, 269, 88-96.	2.5	85

#	Article	IF	CITATIONS
37	<scp>DNA</scp> metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Molecular Ecology, 2019, 28, 232-249.	2.0	43
38	Under the canopy: Community-wide effects of invasive algae in Marine Protected Areas revealed by metabarcoding. Marine Pollution Bulletin, 2018, 127, 54-66.	2.3	24
39	Environmental DNA illuminates the dark diversity of sharks. Science Advances, 2018, 4, eaap9661.	4.7	222
40	Persistence of environmental DNA in marine systems. Communications Biology, 2018, 1, 185.	2.0	256
41	Molecular gut content analysis of different spider body parts. PLoS ONE, 2018, 13, e0196589.	1.1	50
42	DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ, 2018, 6, e4705.	0.9	168
43	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2017, , 571-594.		3
44	Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests. , 2017, , 445-473.		28
45	Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Scientific Reports, 2017, 7, 16886.	1.6	126
46	Hope springs eternal in the starfish gonad: preserved potential for sexual reproduction in a single-clone population of a fissiparous starfish. Hydrobiologia, 2017, 787, 291-305.	1.0	4
47	Assessing the reliability of two tagging techniques in the echinoid Echinometra lucunter. Regional Studies in Marine Science, 2016, 5, 51-54.	0.4	5
48	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2016, , 1-24.		3
49	Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests. , 2016, , 1-29.		16
50	Efficiency of artificial collectors for quantitative assessment of sea urchin settlement rates. Scientia Marina, 2016, 80, 207-216.	0.3	3
51	Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ, 2016, 4, e2807.	0.9	103
52	Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS ONE, 2015, 10, e0139633.	1.1	163
53	Tough as a rock-boring urchin: adult Echinometra sp. EE from the Red Sea show high resistance to ocean acidification over long-term exposures. Marine Biology, 2014, 161, 2531-2545.	0.7	39
54	Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology, 2013, 449, 304-311.	0.7	58

#	Article	IF	CITATIONS
55	The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology, 2013, 160, 3157-3168.	0.7	36
56	Natural or Naturalized? Phylogeography Suggests That the Abundant Sea Urchin Arbacia lixula Is a Recent Colonizer of the Mediterranean. PLoS ONE, 2012, 7, e45067.	1.1	45
57	A wolf in sheep's clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology - Progress Series, 2011, 441, 117-128.	0.9	67
58	A physiological marker for quantifying differential reproductive investment between the sexes in Yellow-legged gulls (Larus michahellis). Journal of Experimental Marine Biology and Ecology, 2010, 396, 48-52.	0.7	16
59	A new application of Streptavidin ImmunoCAP® for measuring IgG antibodies against non-available commercial antigens. Clinica Chimica Acta, 2010, 411, 1675-1678.	0.5	9
60	Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction. BBA - Proteins and Proteomics, 2001, 1547, 156-166.	2.1	31