Tao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2838103/publications.pdf

Version: 2024-02-01

109264 123376 4,047 79 35 61 citations h-index g-index papers 80 80 80 4665 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37, 2602-2611.	1.0	754
2	Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 2014, 2014, 1-13.	1.4	271
3	NLRP3 inflammasome in endothelial dysfunction. Cell Death and Disease, 2020, 11, 776.	2.7	247
4	The Pivotal Role of TBK1 in Inflammatory Responses Mediated by Macrophages. Mediators of Inflammation, 2012, 2012, 1-8.	1.4	144
5	Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. Journal of Ginseng Research, 2017, 41, 127-133.	3.0	93
6	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	4.6	93
7	Inhibitory effect of Sanguisorba officinalis ethanol extract on NO and PGE2 production is mediated by suppression of NF-κB and AP-1 activation signaling cascade. Journal of Ethnopharmacology, 2011, 134, 11-17.	2.0	84
8	Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis, 2020, 298, 14-26.	0.4	79
9	The Regulatory Role of Activating Transcription Factor 2 in Inflammation. Mediators of Inflammation, 2014, 2014, 1-10.	1.4	78
10	Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. Journal of Ethnopharmacology, 2011, 137, 1197-1206.	2.0	76
11	Parkin Regulates Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury by Targeting Cyclophilin-D. Antioxidants and Redox Signaling, 2019, 31, 1177-1193.	2.5	72
12	In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract. Journal of Ethnopharmacology, 2012, 139, 616-625.	2.0	69
13	Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. Journal of Ginseng Research, 2015, 39, 61-68.	3.0	69
14	Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. Journal of Ginseng Research, 2021, 45, 22-31.	3.0	68
15	In vitro and in vivo anti-inflammatory effects of ethanol extract from Acer tegmentosum. Journal of Ethnopharmacology, 2010, 128, 139-147.	2.0	67
16	Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism. Journal of Ethnopharmacology, 2011, 134, 493-500.	2.0	62
17	The ability of an ethanol extract of Cinnamomum cassia to inhibit Src and spleen tyrosine kinase activity contributes to its anti-inflammatory action. Journal of Ethnopharmacology, 2012, 139, 566-573.	2.0	60
18	Ginsenoside Rc from Korean Red Ginseng (<i>Panax ginseng</i> C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis. The American Journal of Chinese Medicine, 2016, 44, 595-615.	1.5	60

#	Article	IF	Citations
19	tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Proliferation, 2021, 54, e12977.	2.4	59
20	Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biology, 2021, 46, 102089.	3.9	59
21	Noncoding <scp>RNA</scp> s as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovascular Therapeutics, 2018, 36, e12436.	1.1	54
22	Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochemical Pharmacology, 2014, 88, 201-215.	2.0	53
23	Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 2018, 272, 153-161.	0.4	51
24	Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid. Mediators of Inflammation, 2012, 2012, 1-13.	1.4	50
25	Piwi-interacting RNAs (piRNAs) as potential biomarkers and therapeutic targets for cardiovascular diseases. Angiogenesis, 2021, 24, 19-34.	3.7	50
26	ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract. Journal of Ethnopharmacology, 2014, 154, 218-228.	2.0	49
27	miR-499-5p Attenuates Mitochondrial Fission and Cell Apoptosis via p21 in Doxorubicin Cardiotoxicity. Frontiers in Genetics, $2018, 9, 734$.	1.1	48
28	Long Non-coding RNA PEBP1P2 Suppresses Proliferative VSMCs Phenotypic Switching and Proliferation in Atherosclerosis. Molecular Therapy - Nucleic Acids, 2020, 22, 84-98.	2.3	48
29	\hat{l}^2 II spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. International Journal of Biological Sciences, 2021, 17, 32-49.	2.6	46
30	The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development. Journal of Cellular and Molecular Medicine, 2021, 25, 5358-5371.	1.6	46
31	Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. International Journal of Biological Sciences, 2021, 17, 1328-1338.	2.6	43
32	TBK1 inhibitors: a review of patent literature (2011 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 1385-1396.	2.4	42
33	MiR-378a-5p Regulates Proliferation and Migration in Vascular Smooth Muscle Cell by Targeting CDK1. Frontiers in Genetics, 2019, 10, 22.	1.1	41
34	The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochemical Pharmacology, 2020, 174, 113797.	2.0	40
35	Hydroquinone regulates hemeoxygenase-1 expression via modulation of Src kinase activity through thiolation of cysteine residues. Free Radical Biology and Medicine, 2013, 57, 105-118.	1.3	39
36	The biomarkers of key miRNAs and target genes associated with acute myocardial infarction. PeerJ, 2020, 8, e9129.	0.9	38

#	Article	IF	CITATIONS
37	3-(4-(tert-Octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases. Biochemical Pharmacology, 2012, 83, 1540-1551.	2.0	36
38	miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opinion on Therapeutic Patents, 2017, 27, 1021-1029.	2.4	36
39	Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Molecular Therapy - Nucleic Acids, 2021, 23, 1136-1160.	2.3	35
40	ERK1- and TBK1-targeted anti-inflammatory activity of an ethanol extract of Dryopteris crassirhizoma. Journal of Ethnopharmacology, 2013, 145, 499-508.	2.0	34
41	Nonâ€coding RNAs in aortic dissection: From biomarkers to therapeutic targets. Journal of Cellular and Molecular Medicine, 2020, 24, 11622-11637.	1.6	33
42	Changes of meibomian glands in patients with type 2 diabetes mellitus. International Journal of Ophthalmology, 2016, 9, 1740-1744.	0.5	32
43	Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. International Journal of Biological Sciences, 2021, 17, 3413-3427.	2.6	32
44	Methanol extract of Hopea odorata suppresses inflammatory responses via the direct inhibition of multiple kinases. Journal of Ethnopharmacology, 2013, 145, 598-607.	2.0	31
45	Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food and Chemical Toxicology, 2021, 151, 112154.	1.8	31
46	Long noncoding RNA XXYLT1-AS2 regulates proliferation and adhesion by targeting the RNA binding protein FUS in HUVEC. Atherosclerosis, 2020, 298, 58-69.	0.4	30
47	5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. Molecular Therapy - Nucleic Acids, 2021, 26, 295-306.	2.3	30
48	Nitric oxide synthase inhibitors: a review of patents from 2011 to the present. Expert Opinion on Therapeutic Patents, 2015, 25, 49-68.	2.4	28
49	The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. Molecular Therapy - Nucleic Acids, 2021, 25, 372-387.	2.3	28
50	Multistage-Responsive Nanocomplexes Attenuate Ulcerative Colitis by Improving the Accumulation and Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon. ACS Applied Materials & Distribution of Oral Nucleic Acid Drugs in the Colon of Ora	4.0	26
51	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
52	Expression profiles and potential roles of transfer RNAâ€derived small RNAs in atherosclerosis. Journal of Cellular and Molecular Medicine, 2021, 25, 7052-7065.	1.6	23
53	MicroRNAâ€302câ€3p inhibits endothelial cell pyroptosis via directly targeting NODâ€; LRR―and pyrin domainâ€containing protein 3 in atherosclerosis. Journal of Cellular and Molecular Medicine, 2021, 25, 4373-4386.	1.6	22
54	Nanostructured, Self-Assembling Peptide K5 Blocks TNF- $\langle i \rangle \hat{l} \pm \langle i \rangle$ and PGE $\langle sub \rangle 2 \langle sub \rangle$ Production by Suppression of the AP-1/p38 Pathway. Mediators of Inflammation, 2012, 2012, 1-8.	1.4	20

#	Article	IF	Citations
55	ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway. Tumor Biology, 2016, 37, 8181-8187.	0.8	19
56	Rs3212986 polymorphism, a possible biomarker to predict smokingâ€related lung cancer, alters DNA repair capacity via regulating ⟨i⟩ERCC1⟨ i⟩ expression. Cancer Medicine, 2018, 7, 6317-6330.	1.3	18
57	Identification of transfer RNA-derived fragments and their potential roles in aortic dissection. Genomics, 2021, 113, 3039-3049.	1.3	18
58	miR-564: A potential regulator of vascular smooth muscle cells and therapeutic target for aortic dissection. Journal of Molecular and Cellular Cardiology, 2022, 170, 100-114.	0.9	16
59	Biointerface topography regulates phenotypic switching and cell apoptosis in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2020, 526, 841-847.	1.0	15
60	Methanol extract of Osbeckia stellata suppresses lipopolysaccharide- and HCl/ethanol-induced inflammatory responses by inhibiting Src/Syk and IRAK1. Journal of Ethnopharmacology, 2012, 143, 876-883.	2.0	13
61	HangAmDan-B, an Ethnomedicinal Herbal Mixture, Suppresses Inflammatory Responses by Inhibiting Syk/NF-ÎB and JNK/ATF-2 Pathways. Journal of Medicinal Food, 2013, 16, 56-65.	0.8	13
62	Src and Syk are targeted to an anti-inflammatory ethanol extract of Aralia continentalis. Journal of Ethnopharmacology, 2012, 143, 746-753.	2.0	11
63	miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis. Frontiers in Cardiovascular Medicine, 2021, 8, 764831.	1.1	10
64	The IncRNA Punisher Regulates Apoptosis and Mitochondrial Homeostasis of Vascular Smooth Muscle Cells via Targeting miR-664a-5p and OPA1. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	10
65	8-(Tosylamino)quinoline inhibits macrophage-mediated inflammation by suppressing NF-l̂ºB signaling. Acta Pharmacologica Sinica, 2012, 33, 1037-1046.	2.8	9
66	Comprehensive profile of circRNAs in formaldehyde induced heart development. Food and Chemical Toxicology, 2022, 162, 112899.	1.8	9
67	A FGFR1 inhibitor patent review: progress since 2010. Expert Opinion on Therapeutic Patents, 2017, 27, 439-454.	2.4	8
68	Aligned Electrospun PLLA/Graphene Microfibers with Nanotopographical Surface Modulate the Mitochondrial Responses of Vascular Smooth Muscle Cells. Advanced Materials Interfaces, 2021, 8, 2100229.	1.9	8
69	Eosinophil: A Nonnegligible Predictor in COVID-19 Re-Positive Patients. Frontiers in Immunology, 2021, 12, 690653.	2.2	8
70	Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14–3-3ε/YAP signaling in vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2020, 147, 35-48.	0.9	6
71	Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC Advances, 2020, 10, 13848-13854.	1.7	6
72	Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders. Advances in Experimental Medicine and Biology, 2017, 982, 327-333.	0.8	6

#	Article	IF	CITATIONS
73	Phacoemulsification in the anterior chamber: An alternative surgical technique in post-vitrectomy cataract. Pakistan Journal of Medical Sciences, 2018, 34, 1512-1516.	0.3	5
74	The pathophysiological role of macrophages in colitis and their treatment., 2022,, 277-297.		2
75	Extracellular Signal-Regulated Kinase Is a Major Enzyme in Korean Mistletoe Lectin-Mediated Regulation of Macrophage Functions. Biomolecules and Therapeutics, 2009, 17, 293-298.	1.1	1
76	CircTMEM165 Facilitates Vascular Endothelial Repair by Modulating Mitochondrial Fission via miR-192/SCP2 in vitro and in vivo. SSRN Electronic Journal, $0, , .$	0.4	0
77	ATF2., 2017,, 1-8.		0
78	ATF2., 2018,, 460-466.		0
79	The IncRNA Punisher Inhibits Apoptosis of Vascular Smooth Muscle Cells Through Regulating Mitochondrial Homeostasis <i>via</i> Targeting miR-664a-5p and OPA1. SSRN Electronic Journal, 0, , .	0.4	0