
Daria A Pichugina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2838040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the Metal Deposition Order on Structural, Electronic and Catalytic Properties of TiO2-Supported Bimetallic Au-Ag Catalysts in 1-Octanol Selective Oxidation. Catalysts, 2021, 11, 799.	3.5	1
2	On the Mechanism of the Reaction between Thiolate-Protected Gold Clusters and Molecular Oxygen: What is Activated?. Journal of Physical Chemistry C, 2020, 124, 3080-3086.	3.1	9
3	Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in n-Octanol Oxidation. Nanomaterials, 2020, 10, 880.	4.1	11
4	Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. Nanomaterials, 2020, 10, 151.	4.1	7
5	Simulation of CO Oxidation in the Presence of Cyclic Gold Thiolate Complexes: The Effect of a Ligand. Kinetics and Catalysis, 2019, 60, 606-611.	1.0	3
6	Effect of Cobalt on the Catalytic Properties of Platinum during the Oxidation of CO: Experimental Data and Quantum-Chemical Simulation. Russian Journal of Physical Chemistry A, 2019, 93, 1957-1964.	0.6	0
7	Structure and reactivity of gold cluster protected by triphosphine ligands: DFT study. Structural Chemistry, 2019, 30, 501-507.	2.0	8
8	Quantum-chemical study of the effect of ligands on the structure and properties of gold clusters. Russian Journal of Physical Chemistry A, 2017, 91, 346-350.	0.6	1
9	Quantum chemical assessment of the ligand effect on the properties and structure of protected gold clusters. Russian Journal of Physical Chemistry A, 2017, 91, 1507-1512.	0.6	2
10	Quantum chemical simulation of propylene oxidation on Ag20. Kinetics and Catalysis, 2016, 57, 184-190.	1.0	1
11	Spin and structural features of oxygen dissociation on tetrahedral Ag20 and Ag19Au clusters. Physical Chemistry Chemical Physics, 2016, 18, 18033-18044.	2.8	15
12	Adsorption of carbon oxide on tetrahedral bimetallic gold–copper clusters. Russian Journal of Physical Chemistry A, 2016, 90, 2402-2407.	0.6	2
13	Ligand-protected gold clusters: the structure, synthesis and applications. Russian Chemical Reviews, 2015, 84, 1114-1144.	6.5	38
14	Correlation between electronic properties and reactivity toward oxygen of tetrahedral gold–silver clusters. Computational and Theoretical Chemistry, 2015, 1055, 61-67.	2.5	14
15	Quantum-chemical modeling of ethylene and acetylene adsorption on gold clusters. Russian Journal of Physical Chemistry A, 2014, 88, 959-964.	0.6	10
16	Formation of H ₂ O ₂ on Au ₂₀ and Au ₁₉ Pd Clusters: Understanding the Structure Effect on the Atomic Level. Journal of Physical Chemistry A, 2013, 117, 6817-6826.	2.5	48
17	Quantum-chemical study of the effect of oxygen on the formation of active sites of silver clusters during the selective adsorption of hydrocarbons. Russian Journal of Physical Chemistry A, 2013, 87, 1520-1526.	0.6	5
18	Sulfur-containing terpyridine derivatives: synthesis, coordination properties, and adsorption on the gold surface. Russian Chemical Bulletin, 2012, 61, 2265-2281.	1.5	8

Daria A Pichugina

#	Article	IF	CITATIONS
19	Studying the adsorption and activation of benzene and chlorobenzene on Ni(12%)/Al2O3 by means of gas chromatography and quantum chemistry. Russian Journal of Physical Chemistry A, 2012, 86, 1892-1897.	0.6	4
20	Regularities of the retention of aminopyridines by silica gel modified with gold nanoparticles. Russian Journal of Physical Chemistry A, 2012, 86, 1623-1629.	0.6	7
21	A Structural and Stability Evaluation of Au ₁₂ from an Isolated Cluster to the Deposited Material. Journal of Physical Chemistry C, 2012, 116, 11507-11518.	3.1	28
22	Activation of oxygen on palladium nanocluster. Nanotechnologies in Russia, 2011, 6, 717-722.	0.7	8
23	Quantum chemical study of the charged gold atom influence on the mechanism of allylbenzene double bond migration. Russian Chemical Bulletin, 2011, 60, 1545-1555.	1.5	2
24	Quantum-chemical simulation of the allyl isomerization of allylbenzene in the presence of gold atom. Russian Journal of Physical Chemistry A, 2011, 85, 646-653.	0.6	3
25	Hydrocarbon adsorption on gold clusters: Experiment and quantum chemical modeling. Russian Journal of Physical Chemistry A, 2010, 84, 2133-2142.	0.6	21
26	Effect of the structure and charge of Au10 clusters on adsorption of hydrocarbons. Russian Chemical Bulletin, 2010, 59, 2039-2046.	1.5	14
27	Role of deposition technique and support nature on the catalytic activity of supported gold clusters: experimental and theoretical study. Studies in Surface Science and Catalysis, 2010, 175, 297-300.	1.5	3
28	Potential surface topology of a butene—gold atom system in the ground state. Russian Chemical Bulletin, 2008, 57, 1356-1363.	1.5	0
29	Quantum chemical simulation of the reaction of methane with gold(I) acetylacetonate and aquaacetylacetonate complexes. Kinetics and Catalysis, 2007, 48, 305-315.	1.0	4
30	A theoretical study of the activation of methane by Gold(III) homoleptic complexes. Russian Journal of Physical Chemistry A, 2007, 81, 883-894.	0.6	14
31	Gold(III) reduction in a tris-HCl buffer: Effect of riboflavin, rutin, 1,1-dipyridyl, and 1-naphthol. Russian Journal of Electrochemistry, 2007, 43, 92-104.	0.9	0
32	Quantum chemical study of C—H bond activation in methane molecule by AuIII aqua chloride complexes. Russian Chemical Bulletin, 2006, 55, 195-206.	1.5	12